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Efficient PBM growth model from liquid 
addition validated using DEM simula-
tions.
Adaptive system scaling in DEM to re-
duce computational cost with fixed par-
ticle count.
The above components implemented in 
3D bi-directional PBM-DEM framework. 
successfully
Wet granulation size and composition 
predicted under varying liquid rates and 
ratios.
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 A B S T R A C T

This study introduces a novel bi-directional and bi-component coupling framework that integrates Population 
Balance Modeling (PBM) and the Discrete Element Method (DEM) for simulating wet granulation processes. 
In conventional approaches, we have treated liquid droplets as granular particles in DEM, which has led 
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DEM-PBM coupling
Granulation

 
to significant computational demands due to the generation and deletion of liquid droplets. To address this 
challenge, we establish a relationship between granule size and their liquid absorption rate utilizing DEM. 
Consequently, we propose a novel mechanistic formulation that incorporates liquid droplets within the PBM, 
enhancing the framework’s ability to accurately simulate particle-liquid interactions, which are crucial for 
granulation outcomes. Additionally, we introduce an adaptive system scaling method (ASSM) within DEM that 
dynamically adjusts system dimensions to accommodate a fixed number of particles, reducing computational 
resources by 82% while maintaining simulation accuracy. We have further validated the proposed framework 
against experimental data. Moreover, integrating these advancements, we investigated the effects of key process 
parameters, such as liquid-to-solid ratio and liquid addition duration, on granulation processes. Results indicate 
a computational cost saving of fivefold through the implementation of ASSM.
1. Introduction

Wet granulation plays an important role in various industries, with 
a particular emphasis on pharmaceuticals, where it serves to enhance 
the properties of powder blends. The process entails the amalgamation 
of powder particles with a liquid binder to create aggregates, resulting 
in improved powder flowability, compressibility, and uniformity, which 
are attributes critical for the production of tablets and capsules. In the 
pharmaceutical sector, wet granulation is indispensable for ensuring 
consistent drug dosage, stability, and a reduction in dust, thereby con-
tributing to a safer and cleaner production environment. Its versatility 
extends beyond pharmaceuticals, finding applications in food, agricul-
ture, detergents, and chemicals. Bi-component wet granulation [1], a 
more complex technique than the single-component process, introduces 
a second solid component during the granulation process. This pro-
vides enhanced control over granule functionality such as control of 
dissolution rates. In pharmaceutical applications, the bi-component for-
mulation involves combining an active pharmaceutical ingredient (API) 
with excipients, enabling precise drug release and stability. Notably, 
this method facilitates the production of different solid dosage forms 
for both immediate and sustained release profiles. Such innovation 
can potentially enhance medication efficacy and supports the develop-
ment of cutting-edge drug delivery systems, to enhance alignment with 
evolving healthcare and pharmaceutical requirements [2]. The existing 
literature offers an array of methods for modeling these particulate 
processes, such as population balance models [3,4], discrete element 
methods [5,6], computational fluid dynamics [7,8], and the Monte 
Carlo techniques [9].

The population balance method (PBM) and discrete element method 
(DEM) are prominent modeling techniques for granulation processes, 
each with distinct advantages and limitations. PBM employs integro-
differential population balance equations (PBEs) to monitor parti-
cle characteristics influenced by rate mechanisms such as nucleation, 
growth, and aggregation [10]. While analytical solutions exist for sim-
plified cases [11], most scenarios require advanced numerical methods, 
including finite element [12], finite volume [3,4], cell average [13], 
and moment [14] methods, ensuring computational efficiency critical 
for industries like pharmaceuticals [15]. However, PBM relies on 
empirical kernels, which may lead to mismatches with experimental re-
sults [16,17] and neglects particle-level nuances crucial for specialized 
applications. In contrast, DEM simulates individual particles using New-
ton’s laws, offering detailed insights into granular system. Although 
originally applied to rock mechanics [18], DEM has moved into other 
disciplines such as biomaterials [19], manufacturing [20], powder 
technology [21], etc. The first models in two dimensions employed 
circular [5] and polygonal [22] particles, which were later advanced 
by spherical [23], triangulated [6] and superquadric [24] particles in 
three dimensions. Although the non-spherical shape of particles brings 
a more realistic approach to the granulation process, we confine our 
work to spherical shape for ease of modeling. Even if researchers use a 
very simplistic particle model, only smaller subdomains, and almost 
stationary solutions, the DEM [5] solution remains computationally 
infeasible for industrial systems. While DEM captures temporal particle 
dynamics, DEM struggles with computational challenges in aggregation 
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and breakage, limiting its efficiency for large-scale applications [21]. 
Despite these challenges, both methods complement each other in 
addressing granulation complexities.

Despite challenges, DEM has been successfully applied to model 
granulation with particle breakage, predicting key process dynamics 
in some studies [25]. However, its application to particle aggrega-
tion remains underexplored, highlighting a gap in current capabilities. 
DEM’s detailed approach is valuable for granular processes but is 
computationally demanding, particularly for industrial systems involv-
ing fragmentation and aggregation. To address this, coupling PBM 
and DEM has gained interest due to their complementary strengths. 
PBM predicts macroscopic outcomes but lacks integration of system 
attributes, while DEM tracks particle-level dynamics, providing mi-
croscale data (e.g., collision frequency, forces) for refining PBM ker-
nels. This coupling approach has been explored for univariate systems, 
with initial studies focusing on one-way coupling for formulating ag-
gregation and breakage kernels [26,27]. Recent works [1,15,28–30] 
improved bi-directional PBM-DEM coupling by prioritizing PBM, intro-
ducing advanced collision detection, and coarse-graining techniques, 
enhancing accuracy and efficiency. However, a significant gap persists 
in multi-dimensional PBM-DEM frameworks with improved mecha-
nistic descriptions for accurately simulating multi-component granule 
dynamics.

In this study, we propose a new bi-directional three-dimensional 
PBM-DEM coupling framework in the presence of liquid droplets, 
aiming to achieve greater accuracy and efficiency in modeling bi-
component granulation processes. The proposed model is developed to 
improve the efficiency of the PBM-DEM coupling by integrating liquid 
addition mechanism directly into the PBM through the introduction 
of a new mathematical formulation for improved computational effi-
ciency. To further enhance efficiency and facilitate the simulation of 
industrial-scale systems, a novel adaptive DEM system scaling approach 
is introduced for the first time in the literature.

The structure of this article is organized as follows: Section 2 
provides an overview of the DEM, PBM, and introduces the proposed 
bi-directional and bi-component PBM-DEM coupling framework. Sec-
tion 3 focuses on verifying the proposed mathematical models of liquid 
addition and system scaling approaches. The verification process is 
conducted for several system specifications to discuss its generalized 
applicability. The predictions and new results of the proposed multi-
component bi-directional PBM-DEM simulation for different test cases 
are presented in Section 4. Finally, Section 5 consolidates the key 
insights and conclusions drawn from the research.

2. Description of simulation framework

This section offers an in-depth description of the multi-dimensional 
PBM, DEM, and their proposed bi-directional coupling technique. The 
primary objective is to observe the evolution of the size and component 
distributions of bi-component (solid) particles within a granulator un-
der continuous liquid flow. Key properties considered in our analysis 
include the volume, chemical content, and liquid absorption rate of 
the particles. The word ‘‘dimension’’ refers to the internal properties 
of particles, not their spatial properties.
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List of Abbreviations and Notations

Nomenclature

𝛼, 𝛿 Adjustable parameters in aggregation ker-
nel

𝛽 Aggregation kernel
𝛽0 Aggregation rate coefficient
𝛥𝑡sim Simulation process time interval
𝛥𝑡𝐶 Rayleigh critical time step
𝛥𝑡𝐷𝐸𝑀 DEM time step
𝛥𝑡𝐷𝐸𝑀 Simulation time step
𝛿nor Normal overlap between particles
𝛿tang Tangential displacement
𝑁̇𝑤 Number inflow rate of binder droplets
𝛾nor, 𝛾tang Damping constants (normal, tangential)
𝜅nor, 𝜅tang Elastic constants (normal, tangential)
𝜇𝑟 Coefficient of rolling friction
𝜇𝑟 Coefficient of rolling friction
𝜇𝑠 Coefficient of static friction
𝜈 Poisson’s ratio
𝜈 Poisson’s ratio
𝛷 Proportionality constant for liquid absorp-

tion
𝜓 Absorption percentage of a granule
𝜌 Density
𝜃 One-third of mean square velocity
𝜔⃗𝑖 Angular velocity of particle 𝑖
𝐹 ext𝑖 External force on particle 𝑖
𝐹nor,𝑖𝑗 Normal contact force between 𝑖 and 𝑗
𝐹tang,𝑖𝑗 Tangential contact force between 𝑖 and 𝑗
𝐹𝑐,𝑖𝑗 Contact force between particles 𝑖 and 𝑗
𝑣𝑖 Velocity vector of particle 𝑖
𝑥⃗𝑖 Position vector of particle 𝑖
𝐴𝐶 API content fraction, 𝐴𝐶 = 𝑠1

𝑠1+𝑠2
𝑑𝑝 Particle diameter
𝐸 Young’s modulus (Pa)
𝐸 Young’s modulus
𝑒 Coefficient of restitution
𝐸∗ Effective modulus
𝑓𝑐 Number-normalized collision frequency
𝑓c,tot Total collision frequency per unit volume
𝐺 Shear modulus
𝐺∗ Effective shear modulus
𝑔0 Radial distribution function
𝐺𝑙𝑖𝑞 Volumetric growth rate of liquid in gran-

ules
𝐼𝑖 Moment of inertia of particle 𝑖
𝑙𝑖 Coarse-graining ratio at iteration 𝑖
𝐿𝐶 Liquid content fraction, 𝐿𝐶 = 𝑙

𝑠1+𝑠2+𝑤
𝑚∗ Effective mass
𝑚𝑖 Mass of particle 𝑖
𝑁 Number of particles in a class
𝑛 Number density function of granuless
3 
𝑁𝑝 Total number of particles
𝑁coll Number of collisions between two particle 

classes
𝑁orig Original (resolved) number of particle
𝑁scaled Scaled (coarse-grained) number of particles
𝑅∗ Effective radius
𝑟0 Initial average particle radius
𝑟𝑖 Average particle radius at iteration 𝑖
𝑠1 Volume of API in a granule
𝑠2 Volume of excipient in a granule
𝑆𝐶 Solid content fraction, 𝑆𝐶 = 𝑠1+𝑠2

𝑠1+𝑠2+𝑤
𝑉 Gross volume of a granule, 𝑉 = 𝑠1 + 𝑠2 +𝑤
𝑤 Volume of binder liquid in a granule
API Active Pharmaceutical Ingredient
ASSM Adaptive System Scaling Method
CG Coarse-Grained
DEM Discrete Element Method
EXP Excipient
LS Liquid-to-solid ratio
PBE Population Balance Equation
PBM Population Balance Model
PSD Particle Size Distribution
RPM Revolutions per minute (impeller speed)

2.1. Multi-dimensional population balance model

PBM serves to describe the behavior of discrete entities in response 
to time-dependent influences. It explains alterations in the number 
densities of distinct particle types within a granulator, influenced by 
influential granulation mechanisms, such as particle growth resulting 
from liquid addition and aggregation due to particle interactions. Dur-
ing granulation, if we consider the composition and particle volume to 
be the most crucial granule characteristics, a three-dimensional PBM is 
sufficient to describe the physics of the process. For this, we employ 
the following three-dimensional PBE:
𝜕𝑛(𝑠1, 𝑠2, 𝑤, 𝑡)

𝜕𝑡
+ 𝜕
𝜕𝑤

[𝐺𝑙𝑖𝑞(𝑠1, 𝑠2, 𝑤, 𝑡) 𝑛(𝑠1, 𝑠2, 𝑤, 𝑡)] =

1
2 ∫

𝑠1

0 ∫

𝑠2

0 ∫

𝑤

0
𝛽(𝑥, 𝑦, 𝑧; 𝑠1 − 𝑥, 𝑠2 − 𝑦,𝑤 − 𝑧; 𝑡)

𝑛(𝑠1 − 𝑥, 𝑠2 − 𝑦,𝑤 − 𝑧, 𝑡) 𝑛(𝑥, 𝑦, 𝑧, 𝑡) d𝑥 d𝑦 d𝑧

− ∫

∞

0 ∫

∞

0 ∫

∞

0
𝛽(𝑥, 𝑦, 𝑧; 𝑠1, 𝑠2, 𝑤; 𝑡) 𝑛(𝑠1, 𝑠2, 𝑤, 𝑡) 𝑛(𝑥, 𝑦, 𝑧, 𝑡) d𝑥 d𝑦 d𝑧 (1)

along with the initial condition 

𝑛(𝑠1, 𝑠2, 𝑤, 0) = 𝑛0(𝑠1, 𝑠2, 𝑤), for (𝑠1, 𝑠2, 𝑤) ∈ (R+)3. (2)

The characteristics of a granule are represented by the state vector 
(𝑠1, 𝑠2, 𝑤) at time 𝑡, where 𝑠1, 𝑠2, and 𝑤 are the volumes of API, 
excipient, and liquid, respectively. Total volume of the granule is the 
sum 𝑠1 + 𝑠2 +𝑤, and total solid volume is 𝑠1 + 𝑠2. Solid, liquid, and API 
contents of the granule can be defined using the following equations: 

𝑆𝐶 =
𝑠1 + 𝑠2

𝑠1 + 𝑠2 +𝑤
, 𝐿𝐶 = 𝑤

𝑠1 + 𝑠2 +𝑤
, 𝐴𝐶 =

𝑠1
𝑠1 + 𝑠2

. (3)

Function 𝑛(𝑠1, 𝑠2, 𝑤, 𝑡) denotes the number density of granules com-
prising solid API volume (𝑠1), solid excipient volume (𝑠2), and binder 
liquid volume (𝑤) at time 𝑡. 𝐺𝑙𝑖𝑞(𝑠1, 𝑠2, 𝑤, 𝑡) represents the volumetric 
growth rate of liquid content in granules due to liquid addition mech-
anism. Formulation of this growth rate 𝐺𝑙𝑖𝑞 may vary depending on 
several factors, including liquid addition rate, particle size, and liquid 
absorption rate of different chemical components. A new mathematical 
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formulation of this particle growth rate is proposed later in this sub-
section and further verified with DEM simulations in the results and 
discussion Section 3 of this manuscript.

The PBE (1) includes terms for the birth and death rates of granules 
through aggregation, with the aggregation kernel 𝛽(𝑠1, 𝑠2, 𝑤; 𝑠′1, 𝑠′2, 𝑤′; 𝑡).
This aggregation kernel indicates the number normalized rate of suc-
cessful aggregation events during particle collisions. This kernel is 
symmetric in its first two coordinate sets, leading to a factor 1/2 
in the first term on the right-hand side of the PBE (1). Moreover, 
this term, referred to as the birth term, signifies the rate of inclusion 
of particles with characteristic volume (𝑠1, 𝑠2, 𝑤) due to successful 
collisions between all possible combinations of particles with volume 
coordinates (𝑠1−𝑥, 𝑠2−𝑦,𝑤−𝑧) and (𝑥, 𝑦, 𝑧), respectively. The last term, 
known as the death term, expresses the removal rate of particles from 
the class (𝑠1, 𝑠2, 𝑤) due to collisional aggregation with other particles.

2.1.1. Aggregation kernel
For ensuring accurate prediction of results, it is crucial to model the 

aggregation kernel 𝛽(𝑠1, 𝑠2, 𝑤; 𝑠′1, 𝑠′2, 𝑤′; 𝑡). Numerous models and factor-
ization techniques are available in the literature for the aggregation 
kernel [1,4,29,31,32]. One commonly adopted approach involves fac-
torizing the aggregation kernel into size-independent and -dependant 
parts [29,31]. Another method is to decompose it into a collision 
frequency term between interacting particles and a collision efficiency 
term [1,32,33]. However, both of these approaches do not directly 
incorporate the effects of liquid content on the aggregation, despite it 
has been already established in the literature that final product granule 
size has a high dependence on the liquid-to-solid ratio parameter [34]. 
Madec et al. [35] developed a kernel capable of incorporating the effect 
of liquid content in addition to the particle volume parameter: 

𝛽𝑀𝑎𝑑𝑒𝑐 (𝑠1, 𝑠2, 𝑤; 𝑠′1, 𝑠
′
2, 𝑤

′; 𝑡) = 𝛽0 (𝑉 + 𝑉 ′)

[

(𝐿𝐶 + 𝐿𝐶 ′)𝛼
(

1 − 𝐿𝐶 + 𝐿𝐶 ′

2

)𝛿
]𝛼

(4)

where 𝑉  and 𝑉 ′ represent the gross volume of the interacting particles, 
i.e., (𝑠1+𝑠2+𝑤) and (𝑠′1+𝑠′2+𝑤′) respectively. This model encompasses 
three adjustable parameters: one aggregation rate coefficient 𝛽0 and 
two exponential parameters 𝛼 and 𝛿, which represent the extent of 
liquid dependence. However, the Madec kernel assumes that every 
particle class can collide with all other particle classes including its own 
class, which often overestimates the aggregation term. Since collision 
frequency depends on particle characteristics and is critical for accurate 
aggregation modeling, the following modified aggregation kernel that 
simultaneously accounts for particle interactions and liquid content: is 
used:

𝛽(𝑠1, 𝑠2, 𝑤; 𝑠′1, 𝑠
′
2, 𝑤

′; 𝑡) =𝑓𝑐 (𝑠1, 𝑠2, 𝑤; 𝑠′1, 𝑠
′
2, 𝑤

′; 𝑡)×
[

𝛽0 (𝑉 + 𝑉 ′)

{

(𝐿𝐶 + 𝐿𝐶 ′)𝛼
(

1 − 𝐿𝐶 + 𝐿𝐶 ′

2

)𝛿
}𝛼]

(5)

where 𝑓𝑐 denotes the number-normalized collision frequency between 
two particle size classes at instance 𝑡, which can be extracted from the 
DEM simulation as follows: 

𝑓𝑐 (𝑠1, 𝑠2, 𝑤; 𝑠′1, 𝑠
′
2, 𝑤

′; 𝑡) =
𝑁𝑐𝑜𝑙𝑙(𝑠1, 𝑠2, 𝑤; 𝑠′1, 𝑠

′
2, 𝑤

′)

𝑁(𝑠1, 𝑠2, 𝑤)𝑁(𝑠′1, 𝑠
′
2, 𝑤

′)𝛥𝑡𝑠𝑖𝑚
(6)

where 𝑁𝑐𝑜𝑙𝑙 number of collisions occurring during the process time 
𝛥𝑡𝑠𝑖𝑚 between particle classes (𝑠1, 𝑠2, 𝑤) and (𝑠′1, 𝑠′2, 𝑤′), containing 
𝑁(𝑠1, 𝑠2, 𝑤) and 𝑁(𝑠′1, 𝑠

′
2, 𝑤

′) number of particles, respectively.

2.1.2. Liquid addition model
During wet granulation, binder liquid is introduced via sprayed 

droplets, which are absorbed by particles, increasing their liquid con-
tent and volume. This surface liquid, combined with impeller shear, 
4 
promotes particle growth. Upon contact with solid particles, droplets ei-
ther coat the surface or penetrate pores. The Madec aggregation kernel 
is more general in its description, considering both surface and ab-
sorbed liquid when calculating the liquid content. There are, however, 
aggregation kernels, such the semi-mechanistic kernel by Chaudhury 
et al. [36], that accounts specifically for the granule’s fractional wetted 
area in the aggregation rate. Additionally, while these binder droplets 
can evaporate from the particle surfaces, this phenomenon falls outside 
the scope of this study. Accurate liquid deposition modeling is thus 
crucial for effectively predicting granulation.

One direct approach to calculating the volumetric growth rate 
from liquid addition involves conducting DEM simulations, recording 
liquid absorbed by each particle, and transferring this data to PBM 
calculations. However, storing and transferring liquid content for each 
particle across multiple DEM runs within the PBM-DEM framework is 
computationally expensive. Thus, efficient mathematical models are 
essential for an overall efficient coupling framework. While a few 
models exist [1,37], none of these models is physically accurate. In 
many cases, either equal distribution to each particle or an associated 
constant rate has been assumed by researchers [1]. However, the 
volumetric growth resulting from binder addition depends on factors 
like liquid flow rate, particle size, particle number, and absorption 
rate. To identify which size parameter correlates with this growth rate, 
several DEM simulations were conducted within this study, revealing 
that liquid addition rate on particle surface varies proportionally to 
particle volume. Section 3 details this verification.

Hence, the liquid droplets captured per unit time by a particle with 
volume vector (𝑠1, 𝑠2, 𝑤) are proportional to (𝑠1+𝑠2+𝑤) 𝑛(𝑠1, 𝑠2, 𝑤)𝜓(𝑠1,
𝑠2, 𝑤), where 𝜓 denotes the absorption percentage of material. Sum-
ming over all particle classes yields:

𝛷 ∫

∞

0 ∫

∞

0 ∫

∞

0
(𝑠1 + 𝑠2 +𝑤) 𝑛(𝑠1, 𝑠2, 𝑤, 𝑡)𝜓(𝑠1, 𝑠2, 𝑤) d𝑠1 d𝑠2 d𝑤 = 𝑁̇𝑤 (7)

⇒ 𝛷 =
𝑁̇𝑤

∫

∞

0 ∫

∞

0 ∫

∞

0
(𝑠1 + 𝑠2 +𝑤) 𝑛((𝑠1, 𝑠2, 𝑤, 𝑡))𝜓(𝑠1, 𝑠2, 𝑤) d𝑠1 d𝑠2 d𝑤

(8)

where, 𝑁̇𝑤 is the number inflow rate of the binder droplets, and 𝛷 is 
the proportionality constant. Finally the growth rate parameter in PBE 
(1) is 
𝐺𝑙𝑖𝑞(𝑠1, 𝑠2, 𝑤, 𝑡) = 𝛷 (𝑠1 + 𝑠2 +𝑤)𝜓(𝑠1, 𝑠2, 𝑤). (9)

2.2. Discrete element method

In DEM [5] simulations, each particle undergoes translational and 
rotational movements due to various forces and torques. These forces 
include body forces (e.g., gravity, electromagnetic forces), interactions 
with neighboring particles, and collisions with walls. The DEM tracks 
the motion of each particle using Newton’s second law of motion. The 
governing equations for each particle are given as follows:

𝑚𝑖
d𝑣𝑖
d𝑡

= 𝑚𝑖
d2𝑥⃗𝑖
d𝑡2

=
𝑁𝑝
∑

𝑗=1
𝐹𝑐,𝑖𝑗 + 𝐹 ext𝑖 , (10)

𝐼𝑖
d𝜔⃗𝑖
d𝑡

= 𝐼𝑖
d2𝜃𝑖
d𝑡2

=
𝑁𝑝
∑

𝑗=1
𝑗≠𝑖

𝑀⃗ 𝑡
𝑖𝑗 . (11)

𝑁𝑝 represents the total number of particles, 𝑚𝑖 is the mass, 𝑣𝑖
denotes the velocity, 𝑥⃗𝑖 represents the spatial position, 𝐼𝑖 represents 
the moment of inertia, and 𝜔⃗𝑖 denotes the angular velocity of the 
𝑖th particle. 𝐹𝑐,𝑖𝑗 , 𝐹 ext𝑖 , and 𝑀⃗ 𝑡

𝑖𝑗 represent the contact force, external 
force, and tangential torque, respectively. External forces encompass 
both body forces and applied fields. The contact force 𝐹𝑐,𝑖𝑗 includes 
both contact and long-range forces. In this study, DEM particles are 
considered dry due to the minimal and evenly distributed binder liquid 
on surfaces.
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Fig. 1. Viscoelastic collision behavior depicted in the normal and tangential directions 
within the Hertz–Mindlin model.

Moreover, we adopt the Hertz–Mindlin contact model [30] to find 
the contact force between colliding particles. The contact forces (𝐹𝑐,𝑖) 
acting on individual particles encompass both normal (𝐹𝑛𝑜𝑟,𝑖𝑗) and 
tangential (𝐹𝑡𝑎𝑛𝑔,𝑖𝑗) components. In the Hertz–Mindlin framework, the 
interaction between two approaching particles is conceptualized as 
a combination of a spring and a dashpot operating in parallel, as 
illustrated in Fig.  1. Consequently, the normal (𝐹𝑛𝑜𝑟,𝑖𝑗) and tangential 
(𝐹𝑡𝑎𝑛𝑔,𝑖𝑗) forces comprise elastic (𝐹𝑒𝑙) and dissipative (𝐹𝑑𝑖𝑠𝑠) compo-
nents. The Hertz–Mindlin model, which is a nonlinear viscoelastic 
model, provides accurate approximations for contact forces. The total 
contact force on a particle is expressed as: 

𝐹𝑐,𝑖 = 𝐹𝑛𝑜𝑟,𝑖𝑗 +𝐹𝑡𝑎𝑛𝑔,𝑖𝑗 = (𝜅𝑛𝑜𝑟𝛿𝑛𝑜𝑟,𝑖𝑗 −𝛾𝑛𝑜𝑟𝑣𝑛𝑜𝑟,𝑖𝑗 )+(𝜅𝑡𝑎𝑛𝑔𝛿𝑡𝑎𝑛𝑔,𝑖𝑗 −𝛾𝑡𝑎𝑛𝑔𝑣𝑡𝑎𝑛𝑔,𝑖𝑗 ).

(12)

𝜅𝑛𝑜𝑟 and 𝜅𝑡𝑎𝑛𝑔 denote the elastic constants, while 𝛾𝑛𝑜𝑟 and 𝛾𝑡𝑎𝑛𝑔 rep-
resent the damping constants along normal and tangential directions, 
respectively. The Hertz–Mindlin contact model equations are given by: 

𝜅𝑛𝑜𝑟 =
4
3
𝐸∗√𝑅∗𝛿𝑛𝑜𝑟; 𝛾𝑛𝑜𝑟 = −2

√

5
6
𝛽
√

𝑆𝑛𝑜𝑟𝑚∗.

𝜅𝑡𝑎𝑛𝑔 = 8𝐺∗√𝑅∗𝛿𝑛𝑜𝑟; 𝛾𝑡𝑎𝑛𝑔 = −2
√

5
6
𝛽
√

𝑆𝑡𝑎𝑛𝑔𝑚∗.

𝑆𝑛𝑜𝑟 = 2𝑌 ∗√𝑅∗𝛿𝑛𝑜𝑟; 𝑆𝑡𝑎𝑛𝑔 = 8𝐺∗√𝑅∗𝛿𝑛𝑜𝑟; 𝛽 =
ln(𝑒)

√

(ln(𝑒))2 + 𝜋2
.

(13)

The effective modulus, radius, shear modulus, mass, and restitution 
coefficient are represented by 𝐸∗, 𝑅∗, 𝐺∗, 𝑚∗, and 𝑒, respectively. DEM 
requires a simulation timestep smaller than the Rayleigh critical time 
(𝛥𝑡𝐶 ) [15], which is calculated as: 

𝛥𝑡𝐶 = 𝜋

[

𝑅
0.163𝜉 + 0.877

√

2𝜌(1 + 𝜉)
𝐸

]

. (14)

The 𝜉 and 𝜌 denote the Poisson’s ratio and density respectively. 
Ensuring accurate DEM simulation requires precise calibration of the 
timestep. In this study, we have maintained a DEM timestep (𝛥𝑡𝐷𝐸𝑀 ) 
at 15% of 𝛥𝑡𝐶 for all DEM simulations to uphold simulation accuracy.

Detection of collisions among particles is another time-consuming 
process in DEM, involving pairwise interactions between particles. 
Here, DEM simulations are primarily utilized for generating collision 
data among different particle classes. While various techniques exist in 
the literature [1,38] for storing DEM collision data, we adopt the recent 
approach proposed by Das et al. [15]. This approach by Das et al. [15] 
efficiently calculates collision data while maintaining accuracy in calcu-
lation. This method avoids repeated collision calculations in subsequent 
time steps by comparing the current neighbor list of particles with the 
previous one. In DEM simulations, the time step (𝛥𝑡𝐷𝐸𝑀 ) is typically 
very small, and in densely packed systems, particles remain in contact 
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during collisions for durations exceeding 𝛥𝑡𝐷𝐸𝑀 . To enhance efficiency, 
the particle neighbor list is compared at intervals of several DEM 
time steps rather than at every 𝛥𝑡𝐷𝐸𝑀 . The authors demonstrated that 
using a collision detection interval of 50𝛥𝑡𝐷𝐸𝑀 , instead of 𝛥𝑡𝐷𝐸𝑀 , 
optimizes the model. This approach results in only a 2.2% error in 
overall collision detection while reducing DEM computational time by 
nearly 70%. The framework had been validated in case of a rotating 
drum granulator and mixer, where the dynamics of agglomeration was 
predicted adequately.

In the bi-component granulation processes, granular particles are 
typically of three types: pure API, pure excipient, and mixed granules. 
Consequently, to simplify and model the internal physical properties 
of any granule type in DEM simulation, we considered the weighted 
volumetric mean of API and excipient properties, accounting for their 
respective contributions. Note that, this approach is only considered for 
the coefficient of restitution property in all considered test cases in this 
article .

Moreover, to verify the growth formulation (9) due to addition 
of liquid droplet in the coupling framework, several DEM simulations 
are conducted incorporating liquid droplets as granular particles. The 
details of these simulations and the output from these simulations are 
provided in Section 3.1.

2.3. PBM-DEM coupling framework

From the introductory discussion, it is evident that DEM and PBM 
alone are insufficient for accurately and efficiently modeling gran-
ulation processes. Therefore, we present the following bi-directional 
multi-component PBM-DEM coupling framework. The schematic of the 
proposed PBM-DEM coupling algorithm is presented in Fig.  2. The 
PBM component is solved using MATLAB, while DEM simulations 
are performed with the open-source LIGGGHTS-Public software. The 
simulation begins with setting up the equipment geometry and meshing 
in Gmsh, a 3D finite element mesh generator with built-in pre- and post-
processing capabilities. Next, particles are initialized and settled within 
the equipment geometry without agitation. Following gravitational 
settling, agitators start rotating and agitate the particles. Once the 
system reaches a steady state, collision data extraction begins. In this 
framework, DEM simulates non-cohesive granular particles and extracts 
collision frequency matrices at different time points, where each ma-
trix entry represents the collision frequency between two particle size 
classes. The particle classes contain both pure solid components (API 
and excipient) and mixed aggregates. The extracted collision frequency 
matrix is then transferred to the PBM to formulate the updated ag-
gregation kernel (𝛽). Then, PBM is simulated to advance the process 
time and determine the corresponding size and composition-based 
distribution of particles within the granulator. During PBM simulation, 
particle sizes and compositions evolve due to collisional aggregation 
and growth resulting from liquid binder addition. The details of these 
models have been discussed earlier in this section. Subsequently, the 
updated particle size distribution (PSD) transferred back to the DEM 
and we initiate a new DEM simulation using this updated PSD, rather 
than modifying particle sizes mid-simulation. This approach avoids 
unphysical overlaps and abrupt changes in contact forces that could 
result from sudden radius inflation of particles already in contact. By 
reinitializing the DEM with the new particle sizes and allowing the 
system to evolve to a steady state – monitored through kinetic energy 
convergence – we ensure that particle configurations remain physically 
realistic. Now, further calculation of collision frequencies take place 
and this collision information is again transferred to PBM. This coupling 
framework is built upon the bi-directional frameworks proposed by Das 
et al. [15] and Barrasso et al. [32].

The coupling timeline of the proposed bi-directional PBM-DEM 
framework is illustrated in Fig.  3. Given that DEM simulations are com-
putationally expensive, the proposed framework utilizes DEM solely for 
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Fig. 2. Proposed bi-directional PBM-DEM coupled framework.
Fig. 3. Timeline overview of the bi-directional PBM-DEM coupling methodology.
stationary simulations, where the process time remains frozen. More-
over, PBM simulations are only employed for advancing the process 
time, thereby enhancing computational efficiency. PBM simulations 
persist until a predefined trigger condition for DEM is met. In our test 
cases, this trigger is either a 20% change in the average particle volume 
or the passage of a specified time period [15,32].

While this PBM-dominant PBM-DEM coupling is computationally 
less expensive than direct DEM simulations due to limited number 
of DEM runs, Das et al. [15] demonstrated that for one-dimensional 
systems, the DEM component still consumes almost all of the computa-
tional time. This issue can be exacerbated for larger or industrial-scale 
systems. Thus, there is an urgent need to develop a new adaptive 
DEM simulation technique that adjusts the DEM simulation box size 
based on requirements while preserving accuracy and efficiency. Such 
an approach can effectively control the overall DEM computational 
expense and reduce overall computational time.

2.3.1. Adaptive system scaling method (ASSM)
Due to the presence of large number of particles in industrial-scale 

systems, conducting DEM simulations on standard CPUs remains a 
significant challenge. Possible solutions include zooming into charac-
teristic subdomains or simulating for shorter time intervals. Another 
interesting approach is to reduce the computational time by scaling 
down [39] the overall system without altering the size of individual 
particles. This approach enables simulation with reduced mass and a 
more manageable number of particles, thus reducing overall computa-
tional time significantly. As the size of the particles is not reduced in the 
scaled-down system, the original particles are treated as coarse-grained 
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(CG) particles. For example, if the simulation system is scaled down 
by a factor of 𝑙 in each direction, the total system volume is reduced 
by a factor of 𝑙3, while particle sizes remain unchanged. Consequently, 
particle sizes in the scaled system are 𝑙 times larger than expected, 
where 𝑙 is defined as the system’s coarse-grained ratio.

In the DEM simulations integrated within the proposed PBM-DEM 
coupling framework, we use a scaled-down system. This approach 
simulates a reduced number of particles while retaining their actual 
size to ensure the volume fraction remains consistent with that of 
the original, fully resolved system. Such scaling enables efficient com-
putational handling without compromising the physical accuracy of 
the simulated particulate interactions. As particles undergo aggrega-
tion and growth during wet granulation, leading to an increase in 
the average particle size over time. The geometric dimensions of the 
DEM system must be adjusted dynamically during the operation of the 
coupled framework to ensure consistency in the system’s solid volume 
fraction. We refer to this technique as the dynamic Adaptive System 
Scaling Method (ASSM). In such a scaled system, the collision frequency 
among particle size classes may decrease due to the presence of fewer 
particles. Consequently, to maintain the accuracy of predictions, col-
lision frequencies between different particle size classes derived from 
scaled-down simulations must be appropriately scaled to reflect those 
of the original system. This scaled collision frequency is crucial for 
successfully coupling DEM and PBM, ensuring accurate information 
transfer between the two models.

Scaling down a system treats original-sized particles as coarse-
grained, requiring adjusted collision frequencies for accurate transfer to 



T. De et al. Powder Technology 467 (2026) 121507 
PBM. Proper scaling, as demonstrated by De et al. [28], ensures consis-
tency despite differences in collision counts between CG and resolved 
systems. The collision frequency per unit volume of the system (𝑓𝑐,𝑡𝑜𝑡) 
can be estimated from the kinetic theory of granular flows [40,41]: 

𝑓𝑐,𝑡𝑜𝑡 = 4 𝑛2 𝑑𝑝
√

𝜋𝜃 𝑔0(𝜖𝑔) (15)

where 𝑛 denotes particle number density with diameter 𝑑𝑝, while 𝑔0
and 𝜃 stand for the radial distribution function and one-third of the 
mean square velocity, respectively. Note that both 𝑔0 and 𝜃 remain 
constant during the transition from resolved to coarse-grained particles 
due to unaffected mass and volume of parent particles. The scaling 
relationship between resolved and coarse-grained systems, denoted by 
superscripts 𝑅𝑒𝑠 and 𝐶𝐺 respectively, is governed by: 

𝑑𝐶𝐺𝑝 = 𝑙 𝑑𝑅𝑒𝑠𝑝 and 𝑁𝑅𝑒𝑠 = 𝑙3𝑁𝐶𝐺 . (16)

As a result, the ratio of collision frequencies between resolved and 
coarse-grained systems is given by: 

𝑓𝑅𝑒𝑠𝑐,𝑡𝑜𝑡

𝑓𝐶𝐺𝑐,𝑡𝑜𝑡
=

(

𝑁𝑅𝑒𝑠 𝑑𝑅𝑒𝑠𝑝

𝑁𝐶𝐺 𝑑𝐶𝐺𝑝

)2

= 𝑙4. (17)

This equation demonstrates that the total collision frequency in the 
resolved system is 𝑙4 times that of the coarse-grained system, necessitat-
ing an 𝑙4 scaling for the coarse-grained system’s collision frequency to 
match that of the resolved system, as validated by De et al. [28]. In this 
article, we propose a similar approach to De et al. [28]. For instance, 
suppose we aim to simulate only 𝑁𝑠𝑐𝑎𝑙𝑒𝑑 particles in DEM simulations 
within the coupled framework, where 𝑁𝑜𝑟𝑖𝑔 represents the total number 
of particles in the original (read as resolved) system at the initial time 
(𝑡 = 𝑡0). To maintain the same fill level, the system must be scaled down 
by a factor of (𝑁𝑜𝑟𝑖𝑔∕𝑁𝑠𝑐𝑎𝑙𝑒𝑑 )1∕3 in each direction. This scaling factor, 
denoted as 𝑙0, represents the coarse-grained ratio for the first iteration 
in the PBM-DEM coupled framework. Thus, 

𝑙0 =
( 𝑁𝑜𝑟𝑖𝑔

𝑁𝑠𝑐𝑎𝑙𝑒𝑑

)1∕3

. (18)

The collision frequency between different particle sizes obtained 
from the first iteration is scaled by 𝑙40 before transferring to PBM. As the 
PBM-DEM coupled framework progresses, the average particle radius 
increases during aggregation. Let 𝑟𝑖 represent the average radius of 
particles in the 𝑖th iteration, with the initial average radius denoted 
as 𝑟0. To maintain a constant total number of particles (𝑁𝑠𝑐𝑎𝑙𝑒𝑑) in 
subsequent iterations, the system must be scaled by 

𝑙𝑖 =
( 𝑁𝑜𝑟𝑖𝑔

𝑁𝑠𝑐𝑎𝑙𝑒𝑑

)1∕3 𝑟𝑖
𝑟0
. (19)

Once again, collision frequency must be scaled by 𝑙4𝑖  before sharing 
it with PBM. Clearly, the system dimension in DEM during the PBM-
DEM coupled framework will be adaptive to keep the total number 
of particles fixed and will be changed dynamically depending on the 
average size of particles in the system. These DEM simulations with 
adaptive geometries will be called adaptive DEM simulations in this 
article. Verification of this proposed method is provided in Section 3.

3. Verification of proposed models: Growth due to liquid absorp-
tion and adaptive system scaling method (ASSM)

This section is dedicated to the verification of proposed new models 
in the previous section. Firstly, we will discuss about the correlation 
between liquid addition rate and their absorption rate. Consequently, 
we will also present a concrete discussion on the proposed ASSM 
technique.
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Table 1
Values of granular material properties, liquid droplet properties and system information 
used in the impeller-bowl simulation.
 Particle properties and system information Granular particles Liquid droplets 
 Density of particle (kg/m3) 1668 1000  
 Poisson’s ratio (𝜈) 0.055 0.1  
 Coefficient of restitution (𝑒) 0.3 0.01  
 Coefficient of static friction (𝜇𝑠) 0.5 0.1  
 Coefficient of rolling friction (𝜇𝑟) 0.1 0.01  
 Diameter of liquid droplets (𝜇𝑚) – 190  
 Young’s modulus (Pa) 5 × 106

 Time for settling the particles (s) 1

 DEM time step (𝛥𝑡𝐷𝐸𝑀 ) (s) 10−6

 Impeller rotational speed 60 rpm

3.1. Liquid absorption rate

In this study, our goal is to efficiently incorporate liquid droplets 
into the PBM-DEM coupled framework. A method demonstrated by 
Barrasso et al. [1] involves treating droplets as granular particles within 
DEM, assigning them specific properties such as density and restitution 
coefficient. These droplets are removed upon interaction with solid 
particles, with their effects recorded as liquid accumulation, which is 
accounted for in PBM at each coupling interval. However, managing 
these liquid particles post-collision and tracking liquid absorption data 
pose significant computational challenges.

To address these challenges, we establish a correlation to model 
liquid addition and absorption by different size classes using some 
DEM simulations. This correlation can be directly integrated into PBM, 
eliminating the need to simulate liquid addition in DEM during the 
coupling process of DEM and PBM. The Hertz–Mindlin contact model is 
used for droplet–droplet interactions. To establish the relationship be-
tween absorbed liquid quantity and various size classes, we conducted 
numerous DEM simulations with various PSDs. In these simulations, 
droplets, with a density equivalent to water, were modeled as solid 
particles. Unlike in reality where the droplets merge, these simulated 
liquid droplets deflect upon collision with each other, behaving like 
granular particles. We assigned a very low coefficient of restitution 
(0.01) to the droplets to ensure they mimic the agglomeration of 
liquids by staying close after collisions. When a droplet collides with 
a granular particle, it is removed from the system, and the particle’s 
liquid content increases, representing absorption without applying con-
tact forces. In these simulations, particles were initially placed within 
a bowl and impeller system, allowed to settle for a duration of 2 
s. Subsequently, rotation of the impeller commenced, initiating the 
generation of a stream of liquid droplets from a predetermined height 
above the particle bed. Within our investigation, the liquid droplets 
were represented as granular particles within the DEM framework. The 
properties associated with these liquid droplets are detailed in Table  1.

A total of 85,000 water droplets were introduced for each simula-
tion involving various PSDs. To execute this simulation, the source code 
of LIGGGHTS-Public [42] has been modified. Our code is implemented 
in the compute_contact_atom.cpp file inside the source folder ‘src’ of 
LIGGGHTS-Public.

Various PSDs have been examined in the conducted DEM simula-
tions. The characteristics of granular particles and the dimensions of the 
impeller-bowl system are detailed in Table  1 and Fig.  4, respectively. 
We have explored multiple scenarios regarding the absorption of liquid 
by the particles. In the first case, granular particles fully absorb liquid 
droplets upon contact. In the second case, certain size classes exhibit 
conditional absorption upon encountering liquid droplets. These sce-
narios will be explained further in the subsequent cases. A schematic 
representation of this liquid absorption approach is depicted in Fig.  5.
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Fig. 4. System Dimensions of the granulator.
Fig. 5. Graphical representation of complete (test case 1) and conditional (test case 2) absorption of liquid droplet in DEM simulation. In the complete absorption case (test case 
1), all the liquid droplets are absorbed by the granular particles successfully upon the contact, which is not the case for test case 2.
3.1.1. Test case 1: Complete absorption of liquid
In this particular case study, we assume that granular particles 

completely absorb all the liquid droplets upon contact, as depicted in 
Fig.  5. Five distinct PSDs are considered, as shown in Fig.  6. These PSDs, 
namely D1, D2, D3, D4, and D5, span sizes ranging from 100 μm to 
625 μm, each adhering to a Gaussian distribution with unique mean 
(260, 320, 380, 440, and 500 μm, respectively) values and same stan-
dard deviation of 100 μm. As the impeller rotates and liquid droplets 
are introduced, granular particles undergo agitation, while the droplets 
descend onto the granular bed. Upon contact with granular particles, 
the liquid droplets are absorbed, consequently augmenting the liquid 
content within the particles. The snapshots of the initial stage (follow-
ing settling of granular particles) and the final stage (post-absorption 
of liquid droplets) are illustrated in Figs.  7 and 8. Additionally, the 
coloration of granular particles in Fig.  7 indicates the extent to which 
individual granules have absorbed liquid droplets. Figs.  8(a) and 8(b) 
show the different radii of particle in different colors at the start and 
end of the simulation.

The rotation of the impeller induces agitation among the granular 
particles within the bowl, facilitating concurrent particle mixing. Ani-
mation (Animation1.avi) in the supplementary material illustrates the 
DEM simulation of liquid droplet absorption. Sub Fig.  9(a) illustrates 
the total liquid absorption across various particle size classes. Sub Fig. 
10(a) plots the liquid absorption per unit volume of granules across 
various size classes, while sub Fig.  9(a) displays only the number nor-
malized liquid absorption for each particle class. The findings depicted 
in Fig.  10(a) reveal a linear correlation between the volume of particle 
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Fig. 6. Different PSDs used in the test case simulations to verify liquid absorption rate.

size classes and the accumulated liquid. Consequently, a cubic curve 
has accurately predicted the observations of different considered PSDs. 
This observation underscores a discernible relationship between the 
volume of granular particles of different size classes and the quantity 
of absorbed liquid droplets. To strengthen our claim, we have also 
performed some simulations for the same PSD where the particle static 
friction (𝜇 ) and coefficient of restitution (𝑒) have been changed to 
𝑠
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Fig. 7. Comparison of initial (a) and final (b) snapshots of the DEM simulation for PSD D5 for test case 1. The colors represent the amount of liquid absorbed by different particles 
based on the color bar provided on the right.
Fig. 8. Comparison of initial (a) and final (b) snapshots of the DEM simulation for PSD D5 for test case 1. The colors represent the radii of different particles as provided on the 
color bar on the right.
0.3 and 0.1, respectively. The results obtained from these simula-
tions have been displayed in Figs.  9(b) and 10(b). The results show 
a good agreement between the proposed model and the simulation
results.

3.1.2. Test case 2: Conditional absorption of liquid droplets
In real-world situations, certain granular particles exhibit hydropho-

bic behavior, causing them to repel liquid droplets upon contact. The 
second test case investigates this phenomenon, focusing on how specific 
particle size classes, due to their hydrophobic properties can affect the 
absorption of liquid droplets. In these simulations, we have considered 
similar granular particle size classes as test case 1. Also, we assumed 
that alternative size classes (i.e., size classes with diameters 125, 175, 
225, ⋯, 625 μm) have a 𝜓% probability to absorb liquid droplets 
while remaining size classes will absorb 100% liquid droplets during 
collisions. If a granular particle fails to absorb the liquid droplet after 
a collision, the droplet is redirected with post-collisional velocity. Fig. 
5 illustrates this process visually.

For instance, when a liquid droplet comes into contact with a 
granular particle, there is an 𝜓% chance of absorption by the granular 
particle. Subsequently, based on predefined conditions, the droplet 
is either absorbed entirely or deflected for another collision with a 
different granular particle in the system. This deflected droplet can 
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merge with other particles. To simulate this behavior, we modified the 
source code of the DEM simulation software, LIGGGHTS-Public. During 
each collision between a liquid droplet and the specified granular 
particle size classes, a uniformly distributed random number between 
0 and 1 is generated. If this random number is less than 𝜓∕100, the 
collision is deemed successful, and the liquid droplet is absorbed by 
the granular particle. Otherwise, the droplet is deflected for another 
collision.

For this particular test case, we ran a DEM simulation where gran-
ular particles with specific size classes absorbed 𝜓 = 50% of liquid 
droplets upon contact. Three different PSDs, D3, D4 and D5 (Fig. 
6), are taken into consideration in this test case 2. Consequently, 
after DEM simulations, the calculated amount of liquid absorbed is 
normalized with each particle class, number, volume, and absorption 
probability to determine the correlation with particle size. The out-
comes are illustrated in Figs.  9(c) and 10(c). Similar to the previous 
test case, the results were well matched against a cubic curve with the 
proportionality constant mentioned in (7). An additional test case was 
performed in which the liquid absorption probability, 𝜓 , was set to 70% 
for alternating particle size classes. Simulations were carried out for the 
D1, D2, D3, D4, and D5 PSDs. The corresponding results are presented 
in Figs.  9(d) and 10(d). A strong agreement is observed between the 
simulation outcomes and the predictions of the proposed model.
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Fig. 9. Distribution of number normalized absorbed liquid on different particle classes when (a) the liquid droplets are completely absorbed with 𝜇𝑠 = 0.5 , 𝑒 = 0.3, (b) the liquid 
droplets are completely absorbed with 𝜇𝑠 = 0.3 , 𝑒 = 0.1, (c) the chance of absorption of liquid droplets is 50% for alternative size classes, and (d) the chance of absorption of liquid 
droplets is 70% for alternative size classes.
This discussion highlights that the absorption of liquid droplets 
depends on the volume of particle size classes in the simulation. A pro-
posed law based on Eq.  (7) accurately predicts the number of droplets 
absorbed by each size class. This law can be directly incorporated into 
PBM, offering computational efficiency. To demonstrate this efficiency, 
we conducted simulations with (complete absorption of liquid) and 
without liquid droplets. Specifically, in a simulation with PSD D3 with 
100,000 particles, we solely performed particle settling and rotation 
without introducing liquid droplets. The comparison of simulation 
duration is shown in Table  2, revealing a significant reduction (more 
than 24%) when liquid droplets are excluded in DEM. This efficiency 
gain is attributed to the reduction of computational resources consumed 
by continuous droplet addition and deletion processes, which involve 
neighbor calculations and periodic recreation of neighbor lists. Another 
aspect of the high computational cost consumption is the presence of a 
large number of particles in the simulation for industrial-scale systems. 
To address this challenge, we have proposed an adaptive system scaling 
method in Section 2.3.1, whose accuracy and efficiency is discussed in 
the following subsection.

3.2. Verification of adaptive system scaling method (ASSM)

As detailed in Section 2.3.1, effective system scaling is crucial for 
reducing computational time without sacrificing accuracy. The concept 
involves conducting DEM simulations with fewer particles at their 
original sizes, ensuring computational feasibility. In our PBM-DEM 
coupled framework, we advocate the use of a fixed number of particles 
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Table 2
Comparison of computational time for with and without introducing the liquid droplets 
in the DEM simulation.
 Computational time (h) 
 With liquid droplets 6.5  
 Without liquid droplets 4.8  

in DEM simulations for any given PSD. This reduced particle count 
should be substantially lower than the original system’s count. To 
achieve this, we propose to scale down the system by a factor of 𝑙𝑖 =
(

𝑁𝑜𝑟𝑖𝑔∕𝑁𝑠𝑐𝑎𝑙𝑒𝑑
)1∕3

⋅ 𝑟𝑖∕𝑟0, where 𝑙𝑖, 𝑖, 𝑁𝑜𝑟𝑖𝑔 , 𝑁𝑠𝑐𝑎𝑙𝑒𝑑 , 𝑟𝑖, and 𝑟0 represent 
the coarse-grained ratio of the system, the PBM-DEM coupling iteration 
number, the actual number of particles in the original system, the 
fixed number of particles used in the DEM simulation in the coupled 
framework, the average radius at the 𝑖th iteration, and the initial aver-
age radius of the system, respectively. As we scale down the system’s 
geometry while keeping particle sizes constant, the particles within the 
simulation domain must be treated as coarse-grained particles. Collision 
frequencies between different size classes obtained from coarse-grained 
DEM simulation need to be rescaled by 𝑙4𝑖  before transferring to PBM 
to adjust for smaller number of collisions resulting from coarse-grained 
particles [28].

To verify the accuracy and efficiency of this proposed dynamic 
system scaling technique, we applied this proposed method to mixer-
impeller systems within a univariate PBM-DEM coupling framework
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Fig. 10. Distribution of absorbed liquid droplets (per unit volume) on different particle classes (a) the liquid droplets are completely absorbed with 𝜇𝑠 = 0.5 , 𝑒 = 0.3, (b) the liquid 
droplets are completely absorbed with 𝜇𝑠 = 0.3 , 𝑒 = 0.1, (c) the chance of absorption of liquid droplets is 50% for alternative size classes, and (d) the chance of absorption of liquid 
droplets is 70% for alternative size classes.
[15]. The system dimension is illustrated in Fig.  4. Initially, the system 
was partially filled with mono-sized volume 10 mm3 with a density 
of 1,000 kg/m3, which constitutes a total granular mass of 1.5 kg. 
Moreover, we consider that during aggregation, these particles grow 
up to the volume of 200 mm3. No liquid droplets were introduced in 
this simulation for simplicity, and other particle properties remained 
consistent with those listed in Table  1. With this setup, the univariate 
PBM-DEM framework is simulated up to 300 s of process time for the 
three following cases:

• Resolved simulation with 150,000 particles, serving as a reference 
simulation.

• Coupling simulation with ASSM technique with appropriate scal-
ing of collision frequencies. For each of the DEM iterations, the 
number of particles inside DEM is fixed to 15,000.

• Coupling simulation with ASSM without scaling the collision 
frequencies.

Fig.  11, 12, and 13 presents a comparison of results from three 
simulations. In the left column of Figs.  11 and 13, we compare resolved 
coupled simulation with ASSM enabled coupled simulation without 
scaling collision frequency. Figs.  11 and 13 depict the mass and number 
of particles for different size classes at various timestamps, alongside 
the mean volume and total number of particles shown in Figs.  12(a)
and 12(b). In contrast, Figs.  11(b), 12, and 13(b) compare resolved 
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coupled simulation with ASSM, incorporating proper scaling of col-
lision frequency. The comparison reveals the significance of scaling 
collision frequency when implementing ASSM. Properly scaled collision 
frequency leads to highly accurate predictions of mass and number 
of particles across various size classes compared to the ASSM case 
without scaled collision frequency. Therefore, these results underscore 
the importance of scaling collision frequency for obtaining accurate 
predictions of real systems. Table  3 shows the errors in computing mass 
of particles at different timestamps with and without scaling 𝑓𝑐 . Cleary, 
ASSM without scaling 𝑓𝑐 produces enormous error whereas the ASSM 
with proper scaling produced results with error less than 6%.

If only pure PBM simulation is executed, it will take a compu-
tational time of around 127 s to complete the simulation of 200 s. 
However, it does not take into account the effects of intermediate 
change in collision frequency between different size classes from DEM 
in PBM-only simulation. Thus, the comparison of computational time 
between ‘‘PBM-only’’ simulation and PBM-DEM coupled simulation is 
not appropriate. Therefore, the comparison of computational times for 
resolved and ASSM are presented in Table  4. One can observe that the 
computational time for ASSM is reduced by almost 83% compared to 
the resolved simulation.

The reduced number of particles remained to be 15,000 for DEM 
to verify ASSM method, but, a change in the number of particles will 
change the computational expenses. The number of particles is to be 
such that it has to be statistically sufficient as well as optimized in 
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Fig. 11. The effect of proper scaling of collision frequency in PSD.
Fig. 12. The effect of proper scaling of collision frequency in the evolution of (a) mean volume and (b) total number of particles.
Fig. 13. The effect of proper scaling of collision frequency in PSD.
Table 3
Comparison of errors in ASSM with and without scaling 𝑓𝑐 .
 Simulation type Error (%) at 𝑡 = 46 s Error (%) at 𝑡 = 139 s Error (%) at 𝑡 = 200 s 
 ASSM, 𝑙4 × 𝑓𝑐 0 0.0001 5.7533  
 ASSM, 𝑙0 × 𝑓𝑐 0 58.75681 62.60090  
12 
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Table 4
Comparison of computational time between Resolved (full scale) and ASSM DEM simulation.
 Process time (s) Resolved simulation (Comp. time (Hours)) ASSM simulation (Comp. time (Hours)) 
 100 2.121 0.383  
 200 4.677 0.810  
 300 6.410 1.117  
 400 8.226 1.438  
 500 10.962 1.912  
Table 5
Comparison of computational time between different ASSM simulations for different numbers of particles.
 Number of particle for ASSM Computational time (h) Error (%) in mean volume after 200 s 
 5,000 1.421 15.252  
 15,000* 1.912 2.781  
 25,000 2.569 0.976  
 50,000 4.149 0.611  
 100,000 5.625 0.426  
 150,000 10.962 0.0  
.

terms of computational cost. To justify our claim, the ASSM simulations 
were simulated for 5,000, 25,000, 50,000, and 100,000 particles and 
compared the computational time in Table  5. It is evident that increas-
ing the number of particles leads to higher computational expense. 
Thus, ASSM simulation with 15,000 number of particles is taken into 
consideration.

4. Results and discussion: Adaptive PBM-DEM coupling frame-
work

In the preceding section, the efficiency and accuracy of the proposed 
PBM-DEM coupling framework were demonstrated. This section details 
the validation of the framework and its applicability to various wet 
granulation setups. Initially, the model is validated against the experi-
mental granulation results reported by Poon et al. [43]. Subsequently, 
we explore the effects of variation in the liquid-to-solid ratio and binder 
addition rate on the bowl-impeller granulation system.

4.1. Validation of proposed PBM-DEM coupling framework

To validate our proposed methodology, we referenced the experi-
mental results reported by Poon et al. [43]. The system dimensions and 
particle parameters align with those described in the studies of Poon 
et al. [43] and Ramachandran et al. [44]. The initial mean diameter 
of the particles was set at 130 μm, with binder liquid sprayed at a 
rate of 1.72 mL/s. To replicate the experimental setup of single solid 
component, we restricted our proposed model (1) to 𝑠2 = 0. The values 
of adjustable parameters in the Madec kernel (4) were calibrated to 
𝛼 = 1, 𝛿 = 1 and 𝛽0 = 2×103. In our simulation, we used a fixed number 
of 50,000 particles in ASSM DEM simulations. DEM simulations were 
triggered at intervals of every 5 min within this coupled framework for 
a total process time of 15 min.

While the proposed framework is capable of replicating the out-
comes for all test cases presented by Poon et al. [43], this paper focuses 
on a comparative analysis with test case 1 only. The evolution of the 
mean particle diameter and the final Particle Size Distribution (PSD) 
at 𝑡 = 15 min are illustrated and compared against the experimental 
data in Figs.  14(a) and 14(b), respectively. The simulated results have 
shown meticulous agreement with the experimental data. Importantly, 
our model successfully captures the overall bi-modal nature of the PSD, 
reflecting its ability to reproduce essential granulation characteristics. 
This qualitative agreement demonstrates the robustness of our frame-
work, even though occasional discrepancies at specific size classes may 
arise from experimental variability or model simplifications.
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Table 6
Values of properties of API, excipients and system information used in mixer simulation
 Particle properties and system information API Excipient 
 Density of particle (kg/m3) 1668
 Poisson’s ratio 0.3
 Coefficient of static friction 0.5
 Coefficient of rolling friction 0.1
 Young’s modulus (Pa) 5 × 106

 Coefficient of restitution 0.9 0.1  
 Time for settling the particles (s) 2 s
 DEM time step (𝛥𝑡𝐷𝐸𝑀 ) (s) 5 × 10−7

 Impeller rotational speed (rpm) 240

4.2. Application in bowl and impeller system

The developed framework can be applied to simulate a wet granu-
lation process to predict key granule attributes such as PSD, content 
uniformity, and liquid content across particle classes. To assess the 
effects of variation in process parameters, two test examples were 
simulated by varying the liquid-to-solid (LS) ratio and liquid addition 
duration while maintaining other parameters fixed. The ensuing sub-
sections detail the observations from these simulations. The granulator 
is initially loaded with 55,000 granular particles, comprising 20% pure 
API and 80% excipients. In our analysis, API and excipient particles 
are differentiated solely based on the coefficient of restitution, set 
to 0.9 and 0.1 respectively, to ensure sufficient variation in collision 
patterns. All other particle properties [45,46] were assumed to be 
similar and constant for simplification (see Table  6). We defined size 
classes each for API and excipient, resulting in a combinatorial set of 
mixed classes with varying API-to-excipient volume ratios. Thus, for 
particles containing both API and excipient, the coefficient of restitu-
tion is assigned as the weighted mean of the coefficients for API and 
excipient based on their respective volume fraction contributions. Thus, 
all other parameters of API and excipient have been kept the same, as 
incorporating variation in more particle properties would greatly add to 
the computational burden and intricacy of the DEM simulations. Both 
particles were initialized to a particle diameter of 58 μ m with equal 
mass distribution. Furthermore, it was considered that the size of each 
binder droplet is the same across all simulations. The parametric values 
of the aggregation kernel (4) are chosen to be 𝛼 = 1, 𝛿 = 1, and 𝛽0 =
100, respectively. During the coupling framework, DEM simulations 
were triggered after every 100 s of process time to update collision 
efficiencies and their impact on the aggregation kernel.

4.2.1. Test example 1: Variation in LS ratio
In this test example, we explore three different values of the liquid-

to-solid (LS) ratio: 5%, 15%, 25%. The liquid addition duration is fixed 
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Fig. 14. Comparison of simulated and experimental (Poon et al. [43]) results at various time stamps. The drum load was 1.5 kg (case 1). 
Fig. 15. Effect of system scaling during the execution of PBM-DEM coupled framework after t= 500 s.
at 50% of the total process time (𝑡𝑝𝑟𝑜𝑐 = 500 s). The results obtained 
from these simulations are illustrated in Figs.  15 and 16.

During granulation, the size of the granules increases over time due 
to growth and aggregation mechanisms. Consequently, the adaptive 
system scaling method (ASSM) is employed, adjusting the size of the 
DEM simulation box in each iteration while maintaining a constant 
overall particle packing fraction. Throughout these DEM simulations, 
the ASSM is utilized to ensure a total of 55,000 particles within the 
DEM system. The evolution of the DEM system dimension for a fixed 
LS ratio of 15% is illustrated in Fig.  16. The system dimensions expand 
in line with the overall increase in particle size.

Similarly, the final system dimensions for various LS ratios are 
shown in Fig.  15. Similar to the previous argument, system dimension 
increases with the increase in LS ratio, as a higher LS ratio helps in an 
increased rate of aggregation and size.

The temporal evolution of various properties is depicted in Figs.  17
and 20. The evolution of average granule radius and the total number 
of granules in the system for different LS ratios are presented in Figs. 
17(a). As expected, particles tend to aggregate and grow more in the 
presence of a higher amount of binder liquid. Thus, increasing the 
liquid content (i.e., LS ratio) should lead to an increase in the average 
granule size and a decrease in the total particle number. This trend 
is clearly observed in Figs.  17(b). Moreover, it is notable that after the 
liquid addition period (at 250 s), the rate of change in granule diameter 
and total number decreases with time due to the presence of fewer 
binder droplets. The time evolution of the total particle volume and 
the API to excipient mass ratio are presented in Figs.  20 and 17(c). 
While the total mass of solid components (API and excipient) remains 
constant over time, the total mass (or volume) of the particle system 
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increases due to the addition of binder on the surfaces of granules. This 
observation is accurately illustrated in Fig.  17(c), where the increase in 
total volume occurs only up to the liquid addition duration, remaining 
constant thereafter. Furthermore, the developed framework accurately 
portrays the mass ratio of API and excipient components in Fig.  20, 
which remains constant throughout the process due to no flux in solid 
components.

Fig.  18 provides insights into the influence of LS ratio on the 
distribution of particles across various size classes. Sub Figs.  18a and 
18d illustrate the number of particles within each size class relative to 
their respective fractional liquid content and fractional API composition 
for an LS ratio of 5%. The fractional liquid content refers to the ratio of 
liquid volume to the total volume of the particle class, while fractional 
API composition represents the ratio of API volume to the total volume 
of the particle class. Similarly, Sub Figs.  18b and 18e depict the particle 
distribution for an LS ratio of 15%, while Sub Figs.  18c and 18f 
represent an LS ratio of 25%. Notably, an increase in LS ratio results 
in a higher number of larger particles. Concurrently, the number of 
particles with greater liquid content and volume also increases with 
higher LS ratios, aligning with experimental trends reported in the 
literature [47,48].

4.2.2. Test example 2: Variation in binder addition duration
The second test case involves the study of the impact of liquid 

addition time on the simulation outcomes. We maintain a fixed LS ratio 
of 0.15 across three simulations, varying the duration of liquid addition. 
For each scenario, we consider liquid addition periods corresponding to 
10%, 50% and 80% of the total process time. In all test cases, the total 
process time is 𝑡 = 500 s.
𝑝𝑟𝑜𝑐
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Fig. 16. The evolution of the DEM system dimension for a fixed LS ratio of 15%.

Fig. 17. The effect of different LS ratios in the adaptive PBM-DEM coupled framework. 

Fig. 18. The effect of LS ratio in the number of particles in the PBM-DEM coupled framework.
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Fig. 19. The effect of different liquid addition duration in the PBM-DEM coupled framework.
Fig. 20. The effect of different LS ratios in the adaptive PBM-DEM coupled framework: 
Comparison of API to excipient (EXP) mass ratio.

In the 𝑡liq = 0.1𝑡proc case, liquid addition occurs rapidly within the 
initial 50 s of process time. Conversely, in the 𝑡liq = 0.8𝑡proc case, liquid 
addition is gradual, spanning the initial 400 s of process time. Thus, in 
𝑡𝑙𝑖𝑞 = 0.1𝑡𝑝𝑟𝑜𝑐 case, particles get liquid droplets at a rapid rate during 
the initial stage of the simulation, which leads to a significant rise in 
the average radius of the particles. On the other hand, 𝑡𝑙𝑖𝑞 = 0.8𝑡𝑝𝑟𝑜𝑐 , 
the liquid addition occurs gradually and slowly during the simulation. 
Hence the average radius of the particle increases slowly in comparison 
to 𝑡𝑙𝑖𝑞 = 0.1𝑡𝑝𝑟𝑜𝑐 case, as shown in Fig.  19.

The temporal evolution of average particle diameter and total num-
ber of particles are plotted in Fig.  19. For the case of 𝑡𝑙𝑖𝑞 = 0.1𝑡𝑝𝑟𝑜𝑐 , all of 
the binder liquid is inserted at the initial 50 s. Therefore, it is evident to 
observe a rapid rise in aggregation and growth mechanisms, resulting in 
a significant rise in average particle size and a decline in total particle 
count. This phenomenon is correctly captured in the figures. Moreover, 
it is also observed that for all three cases, the average particle size and 
total particle count tend to stabilize towards some constant value. It is 
because although the binder addition rate is different, the total amount 
of binder added is constant for all cases. Therefore, we can expect 
to have similar overall results for prolonged simulation of each case. 
Furthermore, the time evolution of total particle volumes is presented 
in Fig.  19(b), demonstrating that each scenario reaches a steady state 
but at varying process durations. Finally, in these cases, it can also be 
observed that the total mass ratio of the API and excipient components 
(see Fig.  21) remains constant throughout, validating the accuracy and 
consistency of the proposed simulation framework.

Finally, Fig.  22 illustrates the impact of liquid addition duration on 
the distribution of particles with respect to size and composition. Sub 
Figs.  22a and 22d represent the number of particles within each size 
class relative to their respective fractional liquid content and fractional 
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Fig. 21. The effect of different liquid addition duration in the PBM-DEM coupled 
framework: Comparison of API to excipient (EXP) mass ratio.

API composition for liquid addition time 𝑡𝑙𝑖𝑞 = 0.1𝑡𝑝𝑟𝑜𝑐 after 𝑡𝑝𝑟𝑜𝑐 = 500
s. Similarly, Sub Figs.  22b and 22e present the particle distribution for 
𝑡𝑙𝑖𝑞 = 0.5𝑡𝑝𝑟𝑜𝑐 , and Sub Figs.  22c and 22f for 𝑡𝑙𝑖𝑞 = 0.8𝑡𝑝𝑟𝑜𝑐 after 𝑡𝑝𝑟𝑜𝑐 = 500
s. In all cases, all liquid droplets are fully inserted by 𝑡𝑝𝑟𝑜𝑐 = 400 s, 
resulting in qualitatively similar particle distributions by 𝑡𝑝𝑟𝑜𝑐 = 500 s. 
However, in the case of 𝑡𝑙𝑖𝑞 = 0.1𝑡𝑝𝑟𝑜𝑐 , all liquid droplets are inserted 
within 𝑡𝑝𝑟𝑜𝑐 = 50 s, allowing particles more time to aggregate and form 
larger sizes compared to other cases. Consequently, we observe peaks 
(see Fig.  22a and 22b) with greater heights for 𝑡𝑙𝑖𝑞 = 0.1𝑡𝑝𝑟𝑜𝑐 compared 
to 𝑡𝑙𝑖𝑞 = 0.5𝑡𝑝𝑟𝑜𝑐 and 𝑡𝑙𝑖𝑞 = 0.8𝑡𝑝𝑟𝑜𝑐 . Conversely, for 𝑡𝑙𝑖𝑞 = 0.8𝑡𝑝𝑟𝑜𝑐 , liquid 
droplets are introduced more gradually, resulting in fewer particles 
with larger diameters generated (see Fig.  22e and 22f) during the 
coupled framework. This trend aligns with experimental expectations.

The above discussion highlights the effectiveness of the proposed 
bi-directional bi-component PBM-DEM (adaptive) coupling framework 
in simulating wet granulation processes. The framework demonstrates 
accurate and efficient predictions that align well with experimental 
expectations.

The validation approach utilized in this work relies on experimental 
data sourced Poon et al. [43], which may introduce discrepancies 
arising from differences in experimental conditions. Future work could 
address experimental validation with modified situations that better ap-
proximated the original simulated situations, they may better validate 
the applications of the developed mode. While the existing PBM-DEM 
coupling framework captures the main features of granulation dynam-
ics, some realistic phenomena such as heterogeneous droplet sizes, 
drying effects, and droplet coalescence, if considered, could greatly 
impact granulation outcomes. For example, heterogeneous droplet sizes 
can lead to heterogeneous liquid distributions and ultimately a lack of 
granule uniformity. Likewise, effects of droplet coalescence, effective 
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Fig. 22. The effect of different liquid addition times in the PBM-DEM coupled framework after 𝑡𝑝𝑟𝑜𝑐 = 500sec.
liquid–solid interactions in granulation may be altered. Drying effects 
experienced during granulation are especially important, as they have 
a significant impact on granule properties, including the end-state 
of the granule’s porosity. One limitation of the current study is the 
use of a constant average value for the liquid absorption probability 
(𝜓); implementing a dynamic, environment- or composition-dependent 
𝜓 could further improve mechanistic accuracy. Including all of the 
above phenomena in the current framework would likely require more 
advanced computational approaches and mathematical formulations 
such as CFD for drying and droplet dynamics simulations or experimen-
tal calibrations for droplet distribution and coalesce behavior. These 
items are interesting areas for further exploration that could make the 
proposed framework more relevant for practical purposes or improve 
overall predictive capability.

5. Conclusions

In this study, we have presented a comprehensive investigation into 
the development, validation, and application of a bi-directional and 
bi-component Population Balance Modeling-Discrete Element Method 
(PBM-DEM) coupling framework for simulating wet granulation pro-
cesses. The proposed framework successfully couples the three-
dimensional PBM with an adaptive DEM to produce accurate and ef-
ficient results. Our framework aims to accurately capture the temporal 
evolution of particle size, liquid, and composition distributions of a wet 
granulation process. Through an in-depth exploration and elaboration 
of the PBM, DEM, and their proposed coupling technique, we have 
demonstrated the framework’s ability to simulate complex particulate 
processes efficiently.

Some of the key components introduced in the proposed framework 
include the dynamic Adaptive System Scaling Method (ASSM) for the 
DEM simulations, which adjusts the size of the simulation domain based 
on changes in particle sizes. Additionally, we introduced a novel liquid 
absorption kernel within the three-dimensional PBM setup. This kernel 
is represented by a mathematical approximation of liquid absorption 
across different particle size classes, verified through DEM simulations. 
The use of the liquid absorption kernel in the PBM removes the need to 
simulate liquid addition and absorption in every DEM coupling simula-
tion. Hence, only the collision frequency is required in the information 
transfer from DEM to PBM.
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The proposed framework is validated against experimental data 
from in the literature. The framework’s versatility and accuracy in 
capturing the effects of process parameters on granule formation are 
demonstrated through two test cases, examining variations in liquid-to-
solid ratio and liquid addition duration. The results confirm the frame-
work’s capability to predict the temporal evolution of particle prop-
erties, including size distribution, liquid content, and API-to-excipient 
mass ratio, is in agreement with experimental findings.

In conclusion, our study highlights the effectiveness of the pro-
posed PBM-DEM coupling framework in simulating multi-component 
wet granulation processes. By accurately capturing the complex in-
terplay between particle dynamics, liquid binding, and aggregation 
kinetics, this framework offers valuable insights for optimizing granula-
tion processes in pharmaceutical and chemical industries. The proposed 
PBM-DEM coupling framework not only enhances the predictive ca-
pabilities for granulation processes but also opens avenues for further 
research and application in pharmaceutical manufacturing. The impli-
cations of this work are profound, promising improved efficiency and 
efficacy in drug formulation and production.
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