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to significant computational demands due to the generation and deletion of liquid droplets. To address this
challenge, we establish a relationship between granule size and their liquid absorption rate utilizing DEM.

Consequently, we propose a novel mechanistic formulation that incorporates liquid droplets within the PBM,
enhancing the framework’s ability to accurately simulate particle-liquid interactions, which are crucial for
granulation outcomes. Additionally, we introduce an adaptive system scaling method (ASSM) within DEM that
dynamically adjusts system dimensions to accommodate a fixed number of particles, reducing computational
resources by 82% while maintaining simulation accuracy. We have further validated the proposed framework
against experimental data. Moreover, integrating these advancements, we investigated the effects of key process
parameters, such as liquid-to-solid ratio and liquid addition duration, on granulation processes. Results indicate
a computational cost saving of fivefold through the implementation of ASSM.

1. Introduction

Wet granulation plays an important role in various industries, with
a particular emphasis on pharmaceuticals, where it serves to enhance
the properties of powder blends. The process entails the amalgamation
of powder particles with a liquid binder to create aggregates, resulting
in improved powder flowability, compressibility, and uniformity, which
are attributes critical for the production of tablets and capsules. In the
pharmaceutical sector, wet granulation is indispensable for ensuring
consistent drug dosage, stability, and a reduction in dust, thereby con-
tributing to a safer and cleaner production environment. Its versatility
extends beyond pharmaceuticals, finding applications in food, agricul-
ture, detergents, and chemicals. Bi-component wet granulation [1], a
more complex technique than the single-component process, introduces
a second solid component during the granulation process. This pro-
vides enhanced control over granule functionality such as control of
dissolution rates. In pharmaceutical applications, the bi-component for-
mulation involves combining an active pharmaceutical ingredient (API)
with excipients, enabling precise drug release and stability. Notably,
this method facilitates the production of different solid dosage forms
for both immediate and sustained release profiles. Such innovation
can potentially enhance medication efficacy and supports the develop-
ment of cutting-edge drug delivery systems, to enhance alignment with
evolving healthcare and pharmaceutical requirements [2]. The existing
literature offers an array of methods for modeling these particulate
processes, such as population balance models [3,4], discrete element
methods [5,6], computational fluid dynamics [7,8], and the Monte
Carlo techniques [9].

The population balance method (PBM) and discrete element method
(DEM) are prominent modeling techniques for granulation processes,
each with distinct advantages and limitations. PBM employs integro-
differential population balance equations (PBEs) to monitor parti-
cle characteristics influenced by rate mechanisms such as nucleation,
growth, and aggregation [10]. While analytical solutions exist for sim-
plified cases [11], most scenarios require advanced numerical methods,
including finite element [12], finite volume [3,4], cell average [13],
and moment [14] methods, ensuring computational efficiency critical
for industries like pharmaceuticals [15]. However, PBM relies on
empirical kernels, which may lead to mismatches with experimental re-
sults [16,17] and neglects particle-level nuances crucial for specialized
applications. In contrast, DEM simulates individual particles using New-
ton’s laws, offering detailed insights into granular system. Although
originally applied to rock mechanics [18], DEM has moved into other
disciplines such as biomaterials [19], manufacturing [20], powder
technology [21], etc. The first models in two dimensions employed
circular [5] and polygonal [22] particles, which were later advanced
by spherical [23], triangulated [6] and superquadric [24] particles in
three dimensions. Although the non-spherical shape of particles brings
a more realistic approach to the granulation process, we confine our
work to spherical shape for ease of modeling. Even if researchers use a
very simplistic particle model, only smaller subdomains, and almost
stationary solutions, the DEM [5] solution remains computationally
infeasible for industrial systems. While DEM captures temporal particle
dynamics, DEM struggles with computational challenges in aggregation

and breakage, limiting its efficiency for large-scale applications [21].
Despite these challenges, both methods complement each other in
addressing granulation complexities.

Despite challenges, DEM has been successfully applied to model
granulation with particle breakage, predicting key process dynamics
in some studies [25]. However, its application to particle aggrega-
tion remains underexplored, highlighting a gap in current capabilities.
DEM'’s detailed approach is valuable for granular processes but is
computationally demanding, particularly for industrial systems involv-
ing fragmentation and aggregation. To address this, coupling PBM
and DEM has gained interest due to their complementary strengths.
PBM predicts macroscopic outcomes but lacks integration of system
attributes, while DEM tracks particle-level dynamics, providing mi-
croscale data (e.g., collision frequency, forces) for refining PBM ker-
nels. This coupling approach has been explored for univariate systems,
with initial studies focusing on one-way coupling for formulating ag-
gregation and breakage kernels [26,27]. Recent works [1,15,28-30]
improved bi-directional PBM-DEM coupling by prioritizing PBM, intro-
ducing advanced collision detection, and coarse-graining techniques,
enhancing accuracy and efficiency. However, a significant gap persists
in multi-dimensional PBM-DEM frameworks with improved mecha-
nistic descriptions for accurately simulating multi-component granule
dynamics.

In this study, we propose a new bi-directional three-dimensional
PBM-DEM coupling framework in the presence of liquid droplets,
aiming to achieve greater accuracy and efficiency in modeling bi-
component granulation processes. The proposed model is developed to
improve the efficiency of the PBM-DEM coupling by integrating liquid
addition mechanism directly into the PBM through the introduction
of a new mathematical formulation for improved computational effi-
ciency. To further enhance efficiency and facilitate the simulation of
industrial-scale systems, a novel adaptive DEM system scaling approach
is introduced for the first time in the literature.

The structure of this article is organized as follows: Section 2
provides an overview of the DEM, PBM, and introduces the proposed
bi-directional and bi-component PBM-DEM coupling framework. Sec-
tion 3 focuses on verifying the proposed mathematical models of liquid
addition and system scaling approaches. The verification process is
conducted for several system specifications to discuss its generalized
applicability. The predictions and new results of the proposed multi-
component bi-directional PBM-DEM simulation for different test cases
are presented in Section 4. Finally, Section 5 consolidates the key
insights and conclusions drawn from the research.

2. Description of simulation framework

This section offers an in-depth description of the multi-dimensional
PBM, DEM, and their proposed bi-directional coupling technique. The
primary objective is to observe the evolution of the size and component
distributions of bi-component (solid) particles within a granulator un-
der continuous liquid flow. Key properties considered in our analysis
include the volume, chemical content, and liquid absorption rate of
the particles. The word “dimension” refers to the internal properties
of particles, not their spatial properties.
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Nomenclature

List of Abbreviations and Notations

Adjustable parameters in aggregation ker-
nel

Aggregation kernel

Aggregation rate coefficient

Simulation process time interval

Rayleigh critical time step

DEM time step

Simulation time step

Normal overlap between particles
Tangential displacement

Number inflow rate of binder droplets
Damping constants (normal, tangential)
Elastic constants (normal, tangential)
Coefficient of rolling friction

Coefficient of rolling friction

Coefficient of static friction

Poisson’s ratio

Poisson’s ratio

Proportionality constant for liquid absorp-
tion

Absorption percentage of a granule
Density

One-third of mean square velocity
Angular velocity of particle i

External force on particle i

Normal contact force between i and j
Tangential contact force between i and j
Contact force between particles i and j
Velocity vector of particle i
Position vector of particle i
API content fraction, AC =
Particle diameter

Young’s modulus (Pa)
Young’s modulus
Coefficient of restitution

31+52

Effective modulus

Number-normalized collision frequency
Total collision frequency per unit volume
Shear modulus

Effective shear modulus

Radial distribution function

Volumetric growth rate of liquid in gran-
ules

Moment of inertia of particle i

Coarse-graining ratio at iteration i
!

Liquid content fraction, LC = ———
S+sy+w

Effective mass

Mass of particle i

Number of particles in a class
Number density function of granuless

N, Total number of particles

Neon Number of collisions between two particle
classes

Norig Original (resolved) number of particle

Ngcaled Scaled (coarse-grained) number of particles

R* Effective radius

ro Initial average particle radius

r; Average particle radius at iteration i

) Volume of API in a granule

Sy Volume of excipient in a granule

SC Solid content fraction, SC = %

|4 Gross volume of a granule, VS]: SZ, +5+w

w Volume of binder liquid in a granule

API Active Pharmaceutical Ingredient

ASSM Adaptive System Scaling Method

CG Coarse-Grained

DEM Discrete Element Method

EXP Excipient

LS Liquid-to-solid ratio

PBE Population Balance Equation

PBM Population Balance Model

PSD Particle Size Distribution

RPM Revolutions per minute (impeller speed)

2.1. Multi-dimensional population balance model

PBM serves to describe the behavior of discrete entities in response
to time-dependent influences. It explains alterations in the number
densities of distinct particle types within a granulator, influenced by
influential granulation mechanisms, such as particle growth resulting
from liquid addition and aggregation due to particle interactions. Dur-
ing granulation, if we consider the composition and particle volume to
be the most crucial granule characteristics, a three-dimensional PBM is
sufficient to describe the physics of the process. For this, we employ
the following three-dimensional PBE:

on(sy, s, w,t
M [Gl,q(sl,sz,w Dn(sy, sy, w,0)] =

//2/ p(x,y,2;81 —X,8p — Y, W — z;t)

n(sy —x,8, —y,w—z,t)n(x,y,z,t)dxdydz

- /0°° /000 /000 B(x,¥,2; 81, 9, wi t)n(sy, s, w, t)n(x, y, z, )y dxdydz (1)
along with the initial condition

n(sy, 55, w,0) = ny(sy, sp, W), for (s;,s,,w) € R*). 2

The characteristics of a granule are represented by the state vector
(s;, 8o, w) at time ¢, where s, s,, and w are the volumes of API,
excipient, and liquid, respectively. Total volume of the granule is the
sum s; + s, + w, and total solid volume is s; +s,. Solid, liquid, and API

contents of the granule can be defined using the following equations:
51+ s, w 51

SC = . LC= , AC = . (3
S| +s,+w Sy +s,+w Sp+ 8y

Function n(s|, s,, w,t) denotes the number density of granules com-
prising solid API volume (s,), solid excipient volume (s,), and binder
liquid volume (w) at time 7. Gy;,(sy, s, w, ) represents the volumetric
growth rate of liquid content in granules due to liquid addition mech-
anism. Formulation of this growth rate G,,, may vary depending on
several factors, including liquid addition rate, particle size, and liquid
absorption rate of different chemical components. A new mathematical
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formulation of this particle growth rate is proposed later in this sub-
section and further verified with DEM simulations in the results and
discussion Section 3 of this manuscript.

The PBE (1) includes terms for the birth and death rates of granules
through aggregation, with the aggregation kernel f(s;, s, w; s}, 55, w'; 1).
This aggregation kernel indicates the number normalized rate of suc-
cessful aggregation events during particle collisions. This kernel is
symmetric in its first two coordinate sets, leading to a factor 1/2
in the first term on the right-hand side of the PBE (1). Moreover,
this term, referred to as the birth term, signifies the rate of inclusion
of particles with characteristic volume (s;,s,, w) due to successful
collisions between all possible combinations of particles with volume
coordinates (s; —x, s, —y, w—z) and (x, y, z), respectively. The last term,
known as the death term, expresses the removal rate of particles from
the class (sy, s,, w) due to collisional aggregation with other particles.

2.1.1. Aggregation kernel

For ensuring accurate prediction of results, it is crucial to model the
aggregation kernel (s, s, w; s’l, s’z, w'’;t). Numerous models and factor-
ization techniques are available in the literature for the aggregation
kernel [1,4,29,31,32]. One commonly adopted approach involves fac-
torizing the aggregation kernel into size-independent and -dependant
parts [29,31]. Another method is to decompose it into a collision
frequency term between interacting particles and a collision efficiency
term [1,32,33]. However, both of these approaches do not directly
incorporate the effects of liquid content on the aggregation, despite it
has been already established in the literature that final product granule
size has a high dependence on the liquid-to-solid ratio parameter [34].
Madec et al. [35] developed a kernel capable of incorporating the effect
of liquid content in addition to the particle volume parameter:
_LC+LC )5 ‘

Bradec(S15 52, W5 5’1,5;7 whin =WV +V") 5

(LC + LC")* (1

4

where V and V' represent the gross volume of the interacting particles,
i.e., (s;+s,+w) and (s’1 +s’2 +w') respectively. This model encompasses
three adjustable parameters: one aggregation rate coefficient f, and
two exponential parameters « and 6, which represent the extent of
liquid dependence. However, the Madec kernel assumes that every
particle class can collide with all other particle classes including its own
class, which often overestimates the aggregation term. Since collision
frequency depends on particle characteristics and is critical for accurate
aggregation modeling, the following modified aggregation kernel that
simultaneously accounts for particle interactions and liquid content: is
used:

By, 85, w3 81, 85, W' 1) =, (51, 55, w3 8}, 55, W' )X

7\ 8 N
ﬂO(V+V’){(LC+LC’)“<1—¥> } ]
)

where f,. denotes the number-normalized collision frequency between
two particle size classes at instance ¢, which can be extracted from the
DEM simulation as follows:

- /
L, Nw,,(s],sz,w,sl,sz,w)
fe(sy, sy w3 87,85, w5 1) = — (6)
N(sy, s, w) N(s}, 85, w') Aty

where N, number of collisions occurring during the process time
Aty,, between particle classes (si,s,,w) and (s],s),w’), containing
N(sy, 55, w) and N(s,s), w’) number of particles, respectively.

2.1.2. Liquid addition model

During wet granulation, binder liquid is introduced via sprayed
droplets, which are absorbed by particles, increasing their liquid con-
tent and volume. This surface liquid, combined with impeller shear,
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promotes particle growth. Upon contact with solid particles, droplets ei-
ther coat the surface or penetrate pores. The Madec aggregation kernel
is more general in its description, considering both surface and ab-
sorbed liquid when calculating the liquid content. There are, however,
aggregation kernels, such the semi-mechanistic kernel by Chaudhury
et al. [36], that accounts specifically for the granule’s fractional wetted
area in the aggregation rate. Additionally, while these binder droplets
can evaporate from the particle surfaces, this phenomenon falls outside
the scope of this study. Accurate liquid deposition modeling is thus
crucial for effectively predicting granulation.

One direct approach to calculating the volumetric growth rate
from liquid addition involves conducting DEM simulations, recording
liquid absorbed by each particle, and transferring this data to PBM
calculations. However, storing and transferring liquid content for each
particle across multiple DEM runs within the PBM-DEM framework is
computationally expensive. Thus, efficient mathematical models are
essential for an overall efficient coupling framework. While a few
models exist [1,37], none of these models is physically accurate. In
many cases, either equal distribution to each particle or an associated
constant rate has been assumed by researchers [1]. However, the
volumetric growth resulting from binder addition depends on factors
like liquid flow rate, particle size, particle number, and absorption
rate. To identify which size parameter correlates with this growth rate,
several DEM simulations were conducted within this study, revealing
that liquid addition rate on particle surface varies proportionally to
particle volume. Section 3 details this verification.

Hence, the liquid droplets captured per unit time by a particle with
volume vector (sy, s,, w) are proportional to (s; +s,+w) n(sy, s, w) w(sy,
s, w), where y denotes the absorption percentage of material. Sum-
ming over all particle classes yields:

di/ / / (s) + 55 + w)n(sy, sy, w, ) (s, s, w)ds, ds, dw =N, (7)
o Jo Jo

> N ®

(D = ) 8] o
/ / / (51 + 855 +w) n((sy, 55, w, 1)) w(sy,s,, w)ds; ds, dw
o Jo Jo

where, N, is the number inflow rate of the binder droplets, and @ is
the proportionality constant. Finally the growth rate parameter in PBE
(1) is

Giig(sp, 50, w, 1) = @ (51 + 55 + W) w(sy, 55, W) 9

2.2. Discrete element method

In DEM [5] simulations, each particle undergoes translational and
rotational movements due to various forces and torques. These forces
include body forces (e.g., gravity, electromagnetic forces), interactions
with neighboring particles, and collisions with walls. The DEM tracks
the motion of each particle using Newton’s second law of motion. The
governing equations for each particle are given as follows:

N,
do, 2% &= .
mg =g = X Foy a0
j=1
- N,
da; @20, & -,
g =l = My o
J

#i

N, represents the total number of particles, m; is the mass, 7,
denotes the velocity, X; represents the spatial position, I; represents
the moment of inertia, and @; denotes the angular velocity of the
ith particle. F"c’,»j, }?f’“, and ]\71[.’1. represent the contact force, external
force, and tangential torque, respectively. External forces encompass
both body forces and applied fields. The contact force 17"4.“- includes
both contact and long-range forces. In this study, DEM particles are
considered dry due to the minimal and evenly distributed binder liquid

on surfaces.
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Fig. 1. Viscoelastic collision behavior depicted in the normal and tangential directions
within the Hertz-Mindlin model.

Sphere j

Moreover, we adopt the Hertz-Mindlin contact model [30] to find
the contact force between colliding particles. The contact forces (IT},,-)
acting on individual particles encompass both normal (IT“WJJ-) and
tangential (Frang,ij) components. In the Hertz-Mindlin framework, the
interaction between two approaching particles is conceptualized as
a combination of a spring and a dashpot operating in parallel, as
illustrated in Fig. 1. Consequently, the normal (fnonij) and tangential
(Figng,;) forces comprise elastic (F,)) and dissipative (F,;,,) compo-
nents. The Hertz-Mindlin model, which is a nonlinear viscoelastic
model, provides accurate approximations for contact forces. The total
contact force on a particle is expressed as:

- - - -

+ Ftangjj = (Knarénor,ij - ynorvnor,ij) + (Ktangétang.ij - ytang Utang,ij)'

(12)

F. =

c,i nor,ij

Kpor and k,,, denote the elastic constants, while y,,, and ,,, rep-
resent the damping constants along normal and tangential directions,
respectively. The Hertz-Mindlin contact model equations are given by:

4, = 5
Knor = §E R 6nar; Ynor = _2\/;ﬂ V Snarm .

¢ [prs 5, /
Ktang = SG* R*‘Snor; ytang = _2\/gﬁ Stangm*' (13)

* * prs ln(e)
Snor =2Y R*(snor; Smng =38G R*anor; ﬁ =

V@Y + 22

The effective modulus, radius, shear modulus, mass, and restitution
coefficient are represented by E*, R*, G*, m*, and e, respectively. DEM
requires a simulation timestep smaller than the Rayleigh critical time
(4tc) [15]1, which is calculated as:

_ R 200+ &)
dic = [0.163.§+0.877 E ] : a4

The & and p denote the Poisson’s ratio and density respectively.
Ensuring accurate DEM simulation requires precise calibration of the
timestep. In this study, we have maintained a DEM timestep (47 )
at 15% of 4t for all DEM simulations to uphold simulation accuracy.

Detection of collisions among particles is another time-consuming
process in DEM, involving pairwise interactions between particles.
Here, DEM simulations are primarily utilized for generating collision
data among different particle classes. While various techniques exist in
the literature [1,38] for storing DEM collision data, we adopt the recent
approach proposed by Das et al. [15]. This approach by Das et al. [15]
efficiently calculates collision data while maintaining accuracy in calcu-
lation. This method avoids repeated collision calculations in subsequent
time steps by comparing the current neighbor list of particles with the
previous one. In DEM simulations, the time step (4fpy,) is typically
very small, and in densely packed systems, particles remain in contact
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during collisions for durations exceeding At ,,. To enhance efficiency,
the particle neighbor list is compared at intervals of several DEM
time steps rather than at every Atp,,. The authors demonstrated that
using a collision detection interval of 50 Atp,,, instead of Arppyy,
optimizes the model. This approach results in only a 2.2% error in
overall collision detection while reducing DEM computational time by
nearly 70%. The framework had been validated in case of a rotating
drum granulator and mixer, where the dynamics of agglomeration was
predicted adequately.

In the bi-component granulation processes, granular particles are
typically of three types: pure API, pure excipient, and mixed granules.
Consequently, to simplify and model the internal physical properties
of any granule type in DEM simulation, we considered the weighted
volumetric mean of API and excipient properties, accounting for their
respective contributions. Note that, this approach is only considered for
the coefficient of restitution property in all considered test cases in this
article .

Moreover, to verify the growth formulation (9) due to addition
of liquid droplet in the coupling framework, several DEM simulations
are conducted incorporating liquid droplets as granular particles. The
details of these simulations and the output from these simulations are
provided in Section 3.1.

2.3. PBM-DEM coupling framework

From the introductory discussion, it is evident that DEM and PBM
alone are insufficient for accurately and efficiently modeling gran-
ulation processes. Therefore, we present the following bi-directional
multi-component PBM-DEM coupling framework. The schematic of the
proposed PBM-DEM coupling algorithm is presented in Fig. 2. The
PBM component is solved using MATLAB, while DEM simulations
are performed with the open-source LIGGGHTS-Public software. The
simulation begins with setting up the equipment geometry and meshing
in Gmsh, a 3D finite element mesh generator with built-in pre- and post-
processing capabilities. Next, particles are initialized and settled within
the equipment geometry without agitation. Following gravitational
settling, agitators start rotating and agitate the particles. Once the
system reaches a steady state, collision data extraction begins. In this
framework, DEM simulates non-cohesive granular particles and extracts
collision frequency matrices at different time points, where each ma-
trix entry represents the collision frequency between two particle size
classes. The particle classes contain both pure solid components (API
and excipient) and mixed aggregates. The extracted collision frequency
matrix is then transferred to the PBM to formulate the updated ag-
gregation kernel (§). Then, PBM is simulated to advance the process
time and determine the corresponding size and composition-based
distribution of particles within the granulator. During PBM simulation,
particle sizes and compositions evolve due to collisional aggregation
and growth resulting from liquid binder addition. The details of these
models have been discussed earlier in this section. Subsequently, the
updated particle size distribution (PSD) transferred back to the DEM
and we initiate a new DEM simulation using this updated PSD, rather
than modifying particle sizes mid-simulation. This approach avoids
unphysical overlaps and abrupt changes in contact forces that could
result from sudden radius inflation of particles already in contact. By
reinitializing the DEM with the new particle sizes and allowing the
system to evolve to a steady state — monitored through kinetic energy
convergence — we ensure that particle configurations remain physically
realistic. Now, further calculation of collision frequencies take place
and this collision information is again transferred to PBM. This coupling
framework is built upon the bi-directional frameworks proposed by Das
et al. [15] and Barrasso et al. [32].

The coupling timeline of the proposed bi-directional PBM-DEM
framework is illustrated in Fig. 3. Given that DEM simulations are com-
putationally expensive, the proposed framework utilizes DEM solely for
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Initial input
* System geometry
* Process parameters

* Initial PSD

+ Total process time (t,,oc)

|

DEM simulation
of updated PSD
o Detection of particle collisions
o Calculation of collision frequency between different particle
classes (f;)

]

o ed

Transfer: Frequency of collisions
between different particle classes (f;)

+
PBM simulation
o Modeling of the aggregation kernel () using f
Particle growth due to liquid absorption
o Solving3D-PBM to update process time (t) and particle
size- & composition-distribution

(o)

: !
! i
i _____________ _| Transfer: Updated size- & composition- |, ___ !
| based data of particle distribution
If t = tyyc, the simulation ends
Fig. 2. Proposed bi-directional PBM-DEM coupled framework.
DEM DEM DEM DEM DEM
t=t, =k t=i t=t; =i t = tproc
[ | | L _ _ ___ | |
I 1 I i I 1

PBM PBM

PBM

PBM

Fig. 3. Timeline overview of the bi-directional PBM-DEM coupling methodology.

stationary simulations, where the process time remains frozen. More-
over, PBM simulations are only employed for advancing the process
time, thereby enhancing computational efficiency. PBM simulations
persist until a predefined trigger condition for DEM is met. In our test
cases, this trigger is either a 20% change in the average particle volume
or the passage of a specified time period [15,32].

While this PBM-dominant PBM-DEM coupling is computationally
less expensive than direct DEM simulations due to limited number
of DEM runs, Das et al. [15] demonstrated that for one-dimensional
systems, the DEM component still consumes almost all of the computa-
tional time. This issue can be exacerbated for larger or industrial-scale
systems. Thus, there is an urgent need to develop a new adaptive
DEM simulation technique that adjusts the DEM simulation box size
based on requirements while preserving accuracy and efficiency. Such
an approach can effectively control the overall DEM computational
expense and reduce overall computational time.

2.3.1. Adaptive system scaling method (ASSM)

Due to the presence of large number of particles in industrial-scale
systems, conducting DEM simulations on standard CPUs remains a
significant challenge. Possible solutions include zooming into charac-
teristic subdomains or simulating for shorter time intervals. Another
interesting approach is to reduce the computational time by scaling
down [39] the overall system without altering the size of individual
particles. This approach enables simulation with reduced mass and a
more manageable number of particles, thus reducing overall computa-
tional time significantly. As the size of the particles is not reduced in the
scaled-down system, the original particles are treated as coarse-grained

(CG) particles. For example, if the simulation system is scaled down
by a factor of / in each direction, the total system volume is reduced
by a factor of /3, while particle sizes remain unchanged. Consequently,
particle sizes in the scaled system are / times larger than expected,
where / is defined as the system’s coarse-grained ratio.

In the DEM simulations integrated within the proposed PBM-DEM
coupling framework, we use a scaled-down system. This approach
simulates a reduced number of particles while retaining their actual
size to ensure the volume fraction remains consistent with that of
the original, fully resolved system. Such scaling enables efficient com-
putational handling without compromising the physical accuracy of
the simulated particulate interactions. As particles undergo aggrega-
tion and growth during wet granulation, leading to an increase in
the average particle size over time. The geometric dimensions of the
DEM system must be adjusted dynamically during the operation of the
coupled framework to ensure consistency in the system’s solid volume
fraction. We refer to this technique as the dynamic Adaptive System
Scaling Method (ASSM). In such a scaled system, the collision frequency
among particle size classes may decrease due to the presence of fewer
particles. Consequently, to maintain the accuracy of predictions, col-
lision frequencies between different particle size classes derived from
scaled-down simulations must be appropriately scaled to reflect those
of the original system. This scaled collision frequency is crucial for
successfully coupling DEM and PBM, ensuring accurate information
transfer between the two models.

Scaling down a system treats original-sized particles as coarse-
grained, requiring adjusted collision frequencies for accurate transfer to
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PBM. Proper scaling, as demonstrated by De et al. [28], ensures consis-
tency despite differences in collision counts between CG and resolved
systems. The collision frequency per unit volume of the system (f,,,)
can be estimated from the kinetic theory of granular flows [40,41]:

Fer = 4n*d, Vz0 go(e,) (15)

where n denotes particle number density with diameter d,, while g,
and 6 stand for the radial distribution function and one-third of the
mean square velocity, respectively. Note that both g, and ¢ remain
constant during the transition from resolved to coarse-grained particles
due to unaffected mass and volume of parent particles. The scaling
relationship between resolved and coarse-grained systems, denoted by
superscripts Res and CG respectively, is governed by:

di¢=1d% and N® =P N (16)

As a result, the ratio of collision frequencies between resolved and
coarse-grained systems is given by:

R Res jRes \ 2

S _(NRdENT_ an
f£€G ~\ NCG 4cG o

c,tot p

This equation demonstrates that the total collision frequency in the
resolved system is /* times that of the coarse-grained system, necessitat-
ing an /* scaling for the coarse-grained system’s collision frequency to
match that of the resolved system, as validated by De et al. [28]. In this
article, we propose a similar approach to De et al. [28]. For instance,
suppose we aim to simulate only N,.,., particles in DEM simulations
within the coupled framework, where N, represents the total number
of particles in the original (read as resolved) system at the initial time
(t = ty). To maintain the same fill level, the system must be scaled down
by a factor of (N,,,,/Ny.q)"/® in each direction. This scaling factor,
denoted as [, represents the coarse-grained ratio for the first iteration
in the PBM-DEM coupled framework. Thus,

N \1/3
%=<Fﬂi) . as)

scaled

The collision frequency between different particle sizes obtained
from the first iteration is scaled by lé before transferring to PBM. As the
PBM-DEM coupled framework progresses, the average particle radius
increases during aggregation. Let r; represent the average radius of
particles in the ith iteration, with the initial average radius denoted
as ry. To maintain a constant total number of particles (N, ) in
subsequent iterations, the system must be scaled by

1/3
l,- — < Nz)rig ) / r_l (19)
N, o

scaled

Once again, collision frequency must be scaled by l;‘ before sharing
it with PBM. Clearly, the system dimension in DEM during the PBM-
DEM coupled framework will be adaptive to keep the total number
of particles fixed and will be changed dynamically depending on the
average size of particles in the system. These DEM simulations with
adaptive geometries will be called adaptive DEM simulations in this
article. Verification of this proposed method is provided in Section 3.

3. Verification of proposed models: Growth due to liquid absorp-
tion and adaptive system scaling method (ASSM)

This section is dedicated to the verification of proposed new models
in the previous section. Firstly, we will discuss about the correlation
between liquid addition rate and their absorption rate. Consequently,
we will also present a concrete discussion on the proposed ASSM
technique.
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Table 1
Values of granular material properties, liquid droplet properties and system information
used in the impeller-bowl simulation.

Particle properties and system information  Granular particles  Liquid droplets

Density of particle (kg/m?) 1668 1000
Poisson’s ratio (v) 0.055 0.1
Coefficient of restitution (e) 0.3 0.01
Coefficient of static friction (u,) 0.5 0.1
Coefficient of rolling friction (y,) 0.1 0.01
Diameter of liquid droplets (um) - 190
Young’s modulus (Pa) 5% 100
Time for settling the particles (s) 1

DEM time step (4tpzy,) (5) 107°
Impeller rotational speed 60 rpm

3.1. Liquid absorption rate

In this study, our goal is to efficiently incorporate liquid droplets
into the PBM-DEM coupled framework. A method demonstrated by
Barrasso et al. [1] involves treating droplets as granular particles within
DEM, assigning them specific properties such as density and restitution
coefficient. These droplets are removed upon interaction with solid
particles, with their effects recorded as liquid accumulation, which is
accounted for in PBM at each coupling interval. However, managing
these liquid particles post-collision and tracking liquid absorption data
pose significant computational challenges.

To address these challenges, we establish a correlation to model
liquid addition and absorption by different size classes using some
DEM simulations. This correlation can be directly integrated into PBM,
eliminating the need to simulate liquid addition in DEM during the
coupling process of DEM and PBM. The Hertz-Mindlin contact model is
used for droplet—droplet interactions. To establish the relationship be-
tween absorbed liquid quantity and various size classes, we conducted
numerous DEM simulations with various PSDs. In these simulations,
droplets, with a density equivalent to water, were modeled as solid
particles. Unlike in reality where the droplets merge, these simulated
liquid droplets deflect upon collision with each other, behaving like
granular particles. We assigned a very low coefficient of restitution
(0.01) to the droplets to ensure they mimic the agglomeration of
liquids by staying close after collisions. When a droplet collides with
a granular particle, it is removed from the system, and the particle’s
liquid content increases, representing absorption without applying con-
tact forces. In these simulations, particles were initially placed within
a bowl and impeller system, allowed to settle for a duration of 2
s. Subsequently, rotation of the impeller commenced, initiating the
generation of a stream of liquid droplets from a predetermined height
above the particle bed. Within our investigation, the liquid droplets
were represented as granular particles within the DEM framework. The
properties associated with these liquid droplets are detailed in Table 1.

A total of 85,000 water droplets were introduced for each simula-
tion involving various PSDs. To execute this simulation, the source code
of LIGGGHTS-Public [42] has been modified. Our code is implemented
in the compute_contact_atom.cpp file inside the source folder ‘src’ of
LIGGGHTS-Public.

Various PSDs have been examined in the conducted DEM simula-
tions. The characteristics of granular particles and the dimensions of the
impeller-bowl system are detailed in Table 1 and Fig. 4, respectively.
We have explored multiple scenarios regarding the absorption of liquid
by the particles. In the first case, granular particles fully absorb liquid
droplets upon contact. In the second case, certain size classes exhibit
conditional absorption upon encountering liquid droplets. These sce-
narios will be explained further in the subsequent cases. A schematic
representation of this liquid absorption approach is depicted in Fig. 5.
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Fig. 4. System Dimensions of the granulator.
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Fig. 5. Graphical representation of complete (test case 1) and conditional (test case 2) absorption of liquid droplet in DEM simulation. In the complete absorption case (test case
1), all the liquid droplets are absorbed by the granular particles successfully upon the contact, which is not the case for test case 2.

3.1.1. Test case 1: Complete absorption of liquid

In this particular case study, we assume that granular particles
completely absorb all the liquid droplets upon contact, as depicted in
Fig. 5. Five distinct PSDs are considered, as shown in Fig. 6. These PSDs,
namely D1, D2, D3, D4, and D5, span sizes ranging from 100 pm to
625 pm, each adhering to a Gaussian distribution with unique mean
(260, 320, 380, 440, and 500 pm, respectively) values and same stan-
dard deviation of 100 pm. As the impeller rotates and liquid droplets
are introduced, granular particles undergo agitation, while the droplets
descend onto the granular bed. Upon contact with granular particles,
the liquid droplets are absorbed, consequently augmenting the liquid
content within the particles. The snapshots of the initial stage (follow-
ing settling of granular particles) and the final stage (post-absorption
of liquid droplets) are illustrated in Figs. 7 and 8. Additionally, the
coloration of granular particles in Fig. 7 indicates the extent to which
individual granules have absorbed liquid droplets. Figs. 8(a) and 8(b)
show the different radii of particle in different colors at the start and
end of the simulation.

The rotation of the impeller induces agitation among the granular
particles within the bowl, facilitating concurrent particle mixing. Ani-
mation (Animationl.avi) in the supplementary material illustrates the
DEM simulation of liquid droplet absorption. Sub Fig. 9(a) illustrates
the total liquid absorption across various particle size classes. Sub Fig.
10(a) plots the liquid absorption per unit volume of granules across
various size classes, while sub Fig. 9(a) displays only the number nor-
malized liquid absorption for each particle class. The findings depicted
in Fig. 10(a) reveal a linear correlation between the volume of particle

0.14 D1
—# D2
0.12 - weqge-- D3
=>--D4
0.1 —+—D5

0 B o 1 Vg g e g
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Diameter of particles (um)

Number normalized size distribution

Fig. 6. Different PSDs used in the test case simulations to verify liquid absorption rate.

size classes and the accumulated liquid. Consequently, a cubic curve
has accurately predicted the observations of different considered PSDs.
This observation underscores a discernible relationship between the
volume of granular particles of different size classes and the quantity
of absorbed liquid droplets. To strengthen our claim, we have also
performed some simulations for the same PSD where the particle static
friction (u,) and coefficient of restitution (e¢) have been changed to
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Fig. 7. Comparison of initial (a) and final (b) snapshots of the DEM simulation for PSD D5 for test case 1. The colors represent the amount of liquid absorbed by different particles
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Fig. 8. Comparison of initial (a) and final (b) snapshots of the DEM simulation for PSD D5 for test case 1. The colors represent the radii of different particles as provided on the

color bar on the right.

0.3 and 0.1, respectively. The results obtained from these simula-
tions have been displayed in Figs. 9(b) and 10(b). The results show
a good agreement between the proposed model and the simulation
results.

3.1.2. Test case 2: Conditional absorption of liquid droplets

In real-world situations, certain granular particles exhibit hydropho-
bic behavior, causing them to repel liquid droplets upon contact. The
second test case investigates this phenomenon, focusing on how specific
particle size classes, due to their hydrophobic properties can affect the
absorption of liquid droplets. In these simulations, we have considered
similar granular particle size classes as test case 1. Also, we assumed
that alternative size classes (i.e., size classes with diameters 125, 175,
225, -, 625 pm) have a w% probability to absorb liquid droplets
while remaining size classes will absorb 100% liquid droplets during
collisions. If a granular particle fails to absorb the liquid droplet after
a collision, the droplet is redirected with post-collisional velocity. Fig.
5 illustrates this process visually.

For instance, when a liquid droplet comes into contact with a
granular particle, there is an w% chance of absorption by the granular
particle. Subsequently, based on predefined conditions, the droplet
is either absorbed entirely or deflected for another collision with a
different granular particle in the system. This deflected droplet can

merge with other particles. To simulate this behavior, we modified the
source code of the DEM simulation software, LIGGGHTS-Public. During
each collision between a liquid droplet and the specified granular
particle size classes, a uniformly distributed random number between
0 and 1 is generated. If this random number is less than y /100, the
collision is deemed successful, and the liquid droplet is absorbed by
the granular particle. Otherwise, the droplet is deflected for another
collision.

For this particular test case, we ran a DEM simulation where gran-
ular particles with specific size classes absorbed y = 50% of liquid
droplets upon contact. Three different PSDs, D3, D4 and D5 (Fig.
6), are taken into consideration in this test case 2. Consequently,
after DEM simulations, the calculated amount of liquid absorbed is
normalized with each particle class, number, volume, and absorption
probability to determine the correlation with particle size. The out-
comes are illustrated in Figs. 9(c) and 10(c). Similar to the previous
test case, the results were well matched against a cubic curve with the
proportionality constant mentioned in (7). An additional test case was
performed in which the liquid absorption probability, v, was set to 70%
for alternating particle size classes. Simulations were carried out for the
D1, D2, D3, D4, and D5 PSDs. The corresponding results are presented
in Figs. 9(d) and 10(d). A strong agreement is observed between the
simulation outcomes and the predictions of the proposed model.
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Fig. 9. Distribution of number normalized absorbed liquid on different particle classes when (a) the liquid droplets are completely absorbed with u, = 0.5,e = 0.3, (b) the liquid
droplets are completely absorbed with u, =0.3,e = 0.1, (c) the chance of absorption of liquid droplets is 50% for alternative size classes, and (d) the chance of absorption of liquid

droplets is 70% for alternative size classes.

This discussion highlights that the absorption of liquid droplets
depends on the volume of particle size classes in the simulation. A pro-
posed law based on Eq. (7) accurately predicts the number of droplets
absorbed by each size class. This law can be directly incorporated into
PBM, offering computational efficiency. To demonstrate this efficiency,
we conducted simulations with (complete absorption of liquid) and
without liquid droplets. Specifically, in a simulation with PSD D3 with
100,000 particles, we solely performed particle settling and rotation
without introducing liquid droplets. The comparison of simulation
duration is shown in Table 2, revealing a significant reduction (more
than 24%) when liquid droplets are excluded in DEM. This efficiency
gain is attributed to the reduction of computational resources consumed
by continuous droplet addition and deletion processes, which involve
neighbor calculations and periodic recreation of neighbor lists. Another
aspect of the high computational cost consumption is the presence of a
large number of particles in the simulation for industrial-scale systems.
To address this challenge, we have proposed an adaptive system scaling
method in Section 2.3.1, whose accuracy and efficiency is discussed in
the following subsection.

3.2. Verification of adaptive system scaling method (ASSM)

As detailed in Section 2.3.1, effective system scaling is crucial for
reducing computational time without sacrificing accuracy. The concept
involves conducting DEM simulations with fewer particles at their
original sizes, ensuring computational feasibility. In our PBM-DEM
coupled framework, we advocate the use of a fixed number of particles

10

Table 2
Comparison of computational time for with and without introducing the liquid droplets
in the DEM simulation.

Computational time (h)

6.5

With liquid droplets

Without liquid droplets 4.8

in DEM simulations for any given PSD. This reduced particle count
should be substantially lower than the original system’s count. To
achieve this, we propose to scale down the system by a factor of /; =
(]Varig/]vsca[ed)l/3 . ri/rO’ where li’ i, Norig’ Nscaled’ Tis and ) represent
the coarse-grained ratio of the system, the PBM-DEM coupling iteration
number, the actual number of particles in the original system, the
fixed number of particles used in the DEM simulation in the coupled
framework, the average radius at the ith iteration, and the initial aver-
age radius of the system, respectively. As we scale down the system’s
geometry while keeping particle sizes constant, the particles within the
simulation domain must be treated as coarse-grained particles. Collision
frequencies between different size classes obtained from coarse-grained
DEM simulation need to be rescaled by /¢ before transferring to PBM
to adjust for smaller number of collisions resulting from coarse-grained
particles [28].

To verify the accuracy and efficiency of this proposed dynamic
system scaling technique, we applied this proposed method to mixer-
impeller systems within a univariate PBM-DEM coupling framework
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Fig. 10. Distribution of absorbed liquid droplets (per unit volume) on different particle classes (a) the liquid droplets are completely absorbed with u, =0.5,e = 0.3, (b) the liquid
droplets are completely absorbed with u, =0.3,e = 0.1, (c) the chance of absorption of liquid droplets is 50% for alternative size classes, and (d) the chance of absorption of liquid

droplets is 70% for alternative size classes.

[15]. The system dimension is illustrated in Fig. 4. Initially, the system
was partially filled with mono-sized volume 10 mm? with a density
of 1,000 kg/m?, which constitutes a total granular mass of 1.5 kg.
Moreover, we consider that during aggregation, these particles grow
up to the volume of 200 mm?. No liquid droplets were introduced in
this simulation for simplicity, and other particle properties remained
consistent with those listed in Table 1. With this setup, the univariate
PBM-DEM framework is simulated up to 300 s of process time for the
three following cases:

* Resolved simulation with 150,000 particles, serving as a reference
simulation.

+ Coupling simulation with ASSM technique with appropriate scal-
ing of collision frequencies. For each of the DEM iterations, the
number of particles inside DEM is fixed to 15,000.

» Coupling simulation with ASSM without scaling the collision
frequencies.

Fig. 11, 12, and 13 presents a comparison of results from three
simulations. In the left column of Figs. 11 and 13, we compare resolved
coupled simulation with ASSM enabled coupled simulation without
scaling collision frequency. Figs. 11 and 13 depict the mass and number
of particles for different size classes at various timestamps, alongside
the mean volume and total number of particles shown in Figs. 12(a)
and 12(b). In contrast, Figs. 11(b), 12, and 13(b) compare resolved
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coupled simulation with ASSM, incorporating proper scaling of col-
lision frequency. The comparison reveals the significance of scaling
collision frequency when implementing ASSM. Properly scaled collision
frequency leads to highly accurate predictions of mass and number
of particles across various size classes compared to the ASSM case
without scaled collision frequency. Therefore, these results underscore
the importance of scaling collision frequency for obtaining accurate
predictions of real systems. Table 3 shows the errors in computing mass
of particles at different timestamps with and without scaling f,. Cleary,
ASSM without scaling f. produces enormous error whereas the ASSM
with proper scaling produced results with error less than 6%.

If only pure PBM simulation is executed, it will take a compu-
tational time of around 127 s to complete the simulation of 200 s.
However, it does not take into account the effects of intermediate
change in collision frequency between different size classes from DEM
in PBM-only simulation. Thus, the comparison of computational time
between “PBM-only” simulation and PBM-DEM coupled simulation is
not appropriate. Therefore, the comparison of computational times for
resolved and ASSM are presented in Table 4. One can observe that the
computational time for ASSM is reduced by almost 83% compared to
the resolved simulation.

The reduced number of particles remained to be 15,000 for DEM
to verify ASSM method, but, a change in the number of particles will
change the computational expenses. The number of particles is to be
such that it has to be statistically sufficient as well as optimized in
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Table 3
Comparison of errors in ASSM with and without scaling f,.

Simulation type Error (%) at 1 = 46 s Error (%) at r = 139 s Error (%) at + = 200 s
ASSM, 14X f, 0 0.0001 5.7533
ASSM, 1° x f, 0 58.75681 62.60090
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Table 4
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Comparison of computational time between Resolved (full scale) and ASSM DEM simulation.

Process time (s)

Resolved simulation (Comp. time (Hours))

ASSM simulation (Comp. time (Hours))

100 2.121 0.383

200 4.677 0.810

300 6.410 1.117

400 8.226 1.438

500 10.962 1.912
Table 5

Comparison of computational time between different ASSM simulations for different numbers of particles.

Number of particle for ASSM

Computational time (h)

Error (%) in mean volume after 200 s

5,000 1.421 15.252
15,000* 1.912 2.781
25,000 2.569 0.976
50,000 4.149 0.611
100,000 5.625 0.426
150,000 10.962 0.0
terms of computational cost. To justify our claim, the ASSM simulations Table 6
were simulated for 5,000, 25,000, 50,000, and 100,000 particles and Values of properties of API, excipients and system information used in mixer simulation.
,000, 25,000, 50,000, 5
compared the computational time in Table 5. It is evident that increas- Particle properties and system information AP Excipient
ing the number of particles leads to higher computational expense. Density of particle (kg/m?) 1668
Thus, ASSM simulation with 15,000 number of particles is taken into Poisson’s ratio 03
i ) Coefficient of static friction 0.5
consideration. Coefficient of rolling friction 0.1
Young’s modulus (Pa) 5% 10°
Coefficient of restitution 0.9 0.1
4. Results and discussion: Adaptive PBM-DEM coupling frame- Time for settling the particles (s) 25
work DEM time step (4t,z),) (s) 5% 1077
Impeller rotational speed (rpm) 240

In the preceding section, the efficiency and accuracy of the proposed
PBM-DEM coupling framework were demonstrated. This section details
the validation of the framework and its applicability to various wet
granulation setups. Initially, the model is validated against the experi-
mental granulation results reported by Poon et al. [43]. Subsequently,
we explore the effects of variation in the liquid-to-solid ratio and binder
addition rate on the bowl-impeller granulation system.

4.1. Validation of proposed PBM-DEM coupling framework

To validate our proposed methodology, we referenced the experi-
mental results reported by Poon et al. [43]. The system dimensions and
particle parameters align with those described in the studies of Poon
et al. [43] and Ramachandran et al. [44]. The initial mean diameter
of the particles was set at 130 pm, with binder liquid sprayed at a
rate of 1.72 mL/s. To replicate the experimental setup of single solid
component, we restricted our proposed model (1) to s, = 0. The values
of adjustable parameters in the Madec kernel (4) were calibrated to
a=1,5=1and ff, = 2x10%. In our simulation, we used a fixed number
of 50,000 particles in ASSM DEM simulations. DEM simulations were
triggered at intervals of every 5 min within this coupled framework for
a total process time of 15 min.

While the proposed framework is capable of replicating the out-
comes for all test cases presented by Poon et al. [43], this paper focuses
on a comparative analysis with test case 1 only. The evolution of the
mean particle diameter and the final Particle Size Distribution (PSD)
at + = 15 min are illustrated and compared against the experimental
data in Figs. 14(a) and 14(b), respectively. The simulated results have
shown meticulous agreement with the experimental data. Importantly,
our model successfully captures the overall bi-modal nature of the PSD,
reflecting its ability to reproduce essential granulation characteristics.
This qualitative agreement demonstrates the robustness of our frame-
work, even though occasional discrepancies at specific size classes may
arise from experimental variability or model simplifications.
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4.2. Application in bowl and impeller system

The developed framework can be applied to simulate a wet granu-
lation process to predict key granule attributes such as PSD, content
uniformity, and liquid content across particle classes. To assess the
effects of variation in process parameters, two test examples were
simulated by varying the liquid-to-solid (LS) ratio and liquid addition
duration while maintaining other parameters fixed. The ensuing sub-
sections detail the observations from these simulations. The granulator
is initially loaded with 55,000 granular particles, comprising 20% pure
API and 80% excipients. In our analysis, API and excipient particles
are differentiated solely based on the coefficient of restitution, set
to 0.9 and 0.1 respectively, to ensure sufficient variation in collision
patterns. All other particle properties [45,46] were assumed to be
similar and constant for simplification (see Table 6). We defined size
classes each for API and excipient, resulting in a combinatorial set of
mixed classes with varying API-to-excipient volume ratios. Thus, for
particles containing both API and excipient, the coefficient of restitu-
tion is assigned as the weighted mean of the coefficients for API and
excipient based on their respective volume fraction contributions. Thus,
all other parameters of API and excipient have been kept the same, as
incorporating variation in more particle properties would greatly add to
the computational burden and intricacy of the DEM simulations. Both
particles were initialized to a particle diameter of 58 p m with equal
mass distribution. Furthermore, it was considered that the size of each
binder droplet is the same across all simulations. The parametric values
of the aggregation kernel (4) are chosen to be « = 1,6 = 1, and g, =
100, respectively. During the coupling framework, DEM simulations
were triggered after every 100 s of process time to update collision
efficiencies and their impact on the aggregation kernel.

4.2.1. Test example 1: Variation in LS ratio
In this test example, we explore three different values of the liquid-
to-solid (LS) ratio: 5%, 15%, 25%. The liquid addition duration is fixed



LS = 15%

Fig. 15. Effect of system scaling during the execution of PBM-DEM coupled framework after t=

at 50% of the total process time (7,,,. = 500 s). The results obtained
from these simulations are illustrated in Figs. 15 and 16.

During granulation, the size of the granules increases over time due
to growth and aggregation mechanisms. Consequently, the adaptive
system scaling method (ASSM) is employed, adjusting the size of the
DEM simulation box in each iteration while maintaining a constant
overall particle packing fraction. Throughout these DEM simulations,
the ASSM is utilized to ensure a total of 55,000 particles within the
DEM system. The evolution of the DEM system dimension for a fixed
LS ratio of 15% is illustrated in Fig. 16. The system dimensions expand
in line with the overall increase in particle size.

Similarly, the final system dimensions for various LS ratios are
shown in Fig. 15. Similar to the previous argument, system dimension
increases with the increase in LS ratio, as a higher LS ratio helps in an
increased rate of aggregation and size.

The temporal evolution of various properties is depicted in Figs. 17
and 20. The evolution of average granule radius and the total number
of granules in the system for different LS ratios are presented in Figs.
17(a). As expected, particles tend to aggregate and grow more in the
presence of a higher amount of binder liquid. Thus, increasing the
liquid content (i.e., LS ratio) should lead to an increase in the average
granule size and a decrease in the total particle number. This trend
is clearly observed in Figs. 17(b). Moreover, it is notable that after the
liquid addition period (at 250 s), the rate of change in granule diameter
and total number decreases with time due to the presence of fewer
binder droplets. The time evolution of the total particle volume and
the API to excipient mass ratio are presented in Figs. 20 and 17(c).
While the total mass of solid components (API and excipient) remains

constant over time, the total mass (or volume) of the particle system
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increases due to the addition of binder on the surfaces of granules. This
observation is accurately illustrated in Fig. 17(c), where the increase in
total volume occurs only up to the liquid addition duration, remaining
constant thereafter. Furthermore, the developed framework accurately
portrays the mass ratio of API and excipient components in Fig. 20,
which remains constant throughout the process due to no flux in solid
components.

Fig. 18 provides insights into the influence of LS ratio on the
distribution of particles across various size classes. Sub Figs. 18a and
18d illustrate the number of particles within each size class relative to
their respective fractional liquid content and fractional API composition
for an LS ratio of 5%. The fractional liquid content refers to the ratio of
liquid volume to the total volume of the particle class, while fractional
API composition represents the ratio of API volume to the total volume
of the particle class. Similarly, Sub Figs. 18b and 18e depict the particle
distribution for an LS ratio of 15%, while Sub Figs. 18c and 18f
represent an LS ratio of 25%. Notably, an increase in LS ratio results
in a higher number of larger particles. Concurrently, the number of
particles with greater liquid content and volume also increases with
higher LS ratios, aligning with experimental trends reported in the
literature [47,48].

4.2.2. Test example 2: Variation in binder addition duration

The second test case involves the study of the impact of liquid
addition time on the simulation outcomes. We maintain a fixed LS ratio
of 0.15 across three simulations, varying the duration of liquid addition.
For each scenario, we consider liquid addition periods corresponding to
10%, 50% and 80% of the total process time. In all test cases, the total
=500 s.

process time 1S 7,

14
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In the ) = 0.1#,, case, liquid addition occurs rapidly within the
initial 50 s of process time. Conversely, in the #;;q = 0.87,,. case, liquid
addition is gradual, spanning the initial 400 s of process time. Thus, in
t1; = 0.1t case, particles get liquid droplets at a rapid rate during
the initial stage of the simulation, which leads to a significant rise in
the average radius of the particles. On the other hand, #,, = 0.8¢,,,,
the liquid addition occurs gradually and slowly during the simulation.
Hence the average radius of the particle increases slowly in comparison
to t;, = 0.1¢,,,. case, as shown in Fig. 19.

The temporal evolution of average particle diameter and total num-
ber of particles are plotted in Fig. 19. For the case of t;;, = 0.17,,,,,, all of
the binder liquid is inserted at the initial 50 s. Therefore, it is evident to
observe a rapid rise in aggregation and growth mechanisms, resulting in
a significant rise in average particle size and a decline in total particle
count. This phenomenon is correctly captured in the figures. Moreover,
it is also observed that for all three cases, the average particle size and
total particle count tend to stabilize towards some constant value. It is
because although the binder addition rate is different, the total amount
of binder added is constant for all cases. Therefore, we can expect
to have similar overall results for prolonged simulation of each case.
Furthermore, the time evolution of total particle volumes is presented
in Fig. 19(b), demonstrating that each scenario reaches a steady state
but at varying process durations. Finally, in these cases, it can also be
observed that the total mass ratio of the API and excipient components
(see Fig. 21) remains constant throughout, validating the accuracy and
consistency of the proposed simulation framework.

Finally, Fig. 22 illustrates the impact of liquid addition duration on
the distribution of particles with respect to size and composition. Sub
Figs. 22a and 22d represent the number of particles within each size
class relative to their respective fractional liquid content and fractional
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API composition for liquid addition time #,, = 0.1#,,,. after #,,,. = 500

s. Similarly, Sub Figs. 22b and 22e present the particle distribution for

t1ig = 0.5, and Sub Figs. 22¢ and 22f for #,;, = 0.81,,,, afterz,,,. = 500
s. In all cases, all liquid droplets are fully inserted by 7, = 400 s,
resulting in qualitatively similar particle distributions by ¢, = 500 s.

However, in the case of #;;, = 0.1, all liquid droplets are inserted
within ¢,,,. = 50 s, allowing particles more time to aggregate and form
larger sizes compared to other cases. Consequently, we observe peaks
(see Fig. 22a and 22b) with greater heights for 7,;, = 0.17,,,. compared
to t;, = 0.5t,,,, and t,;, = 0.8¢,,.. Conversely, for #,, = 0.8¢,,,., liquid
droplets are introduced more gradually, resulting in fewer particles
with larger diameters generated (see Fig. 22e and 22f) during the
coupled framework. This trend aligns with experimental expectations.

The above discussion highlights the effectiveness of the proposed
bi-directional bi-component PBM-DEM (adaptive) coupling framework
in simulating wet granulation processes. The framework demonstrates
accurate and efficient predictions that align well with experimental
expectations.

The validation approach utilized in this work relies on experimental
data sourced Poon et al. [43], which may introduce discrepancies
arising from differences in experimental conditions. Future work could
address experimental validation with modified situations that better ap-
proximated the original simulated situations, they may better validate
the applications of the developed mode. While the existing PBM-DEM
coupling framework captures the main features of granulation dynam-
ics, some realistic phenomena such as heterogeneous droplet sizes,
drying effects, and droplet coalescence, if considered, could greatly
impact granulation outcomes. For example, heterogeneous droplet sizes
can lead to heterogeneous liquid distributions and ultimately a lack of
granule uniformity. Likewise, effects of droplet coalescence, effective
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liquid-solid interactions in granulation may be altered. Drying effects
experienced during granulation are especially important, as they have
a significant impact on granule properties, including the end-state
of the granule’s porosity. One limitation of the current study is the
use of a constant average value for the liquid absorption probability
(w); implementing a dynamic, environment- or composition-dependent
y could further improve mechanistic accuracy. Including all of the
above phenomena in the current framework would likely require more
advanced computational approaches and mathematical formulations
such as CFD for drying and droplet dynamics simulations or experimen-
tal calibrations for droplet distribution and coalesce behavior. These
items are interesting areas for further exploration that could make the
proposed framework more relevant for practical purposes or improve
overall predictive capability.

5. Conclusions

In this study, we have presented a comprehensive investigation into
the development, validation, and application of a bi-directional and
bi-component Population Balance Modeling-Discrete Element Method
(PBM-DEM) coupling framework for simulating wet granulation pro-
cesses. The proposed framework successfully couples the three-
dimensional PBM with an adaptive DEM to produce accurate and ef-
ficient results. Our framework aims to accurately capture the temporal
evolution of particle size, liquid, and composition distributions of a wet
granulation process. Through an in-depth exploration and elaboration
of the PBM, DEM, and their proposed coupling technique, we have
demonstrated the framework’s ability to simulate complex particulate
processes efficiently.

Some of the key components introduced in the proposed framework
include the dynamic Adaptive System Scaling Method (ASSM) for the
DEM simulations, which adjusts the size of the simulation domain based
on changes in particle sizes. Additionally, we introduced a novel liquid
absorption kernel within the three-dimensional PBM setup. This kernel
is represented by a mathematical approximation of liquid absorption
across different particle size classes, verified through DEM simulations.
The use of the liquid absorption kernel in the PBM removes the need to
simulate liquid addition and absorption in every DEM coupling simula-
tion. Hence, only the collision frequency is required in the information
transfer from DEM to PBM.
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The proposed framework is validated against experimental data
from in the literature. The framework’s versatility and accuracy in
capturing the effects of process parameters on granule formation are
demonstrated through two test cases, examining variations in liquid-to-
solid ratio and liquid addition duration. The results confirm the frame-
work’s capability to predict the temporal evolution of particle prop-
erties, including size distribution, liquid content, and API-to-excipient
mass ratio, is in agreement with experimental findings.

In conclusion, our study highlights the effectiveness of the pro-
posed PBM-DEM coupling framework in simulating multi-component
wet granulation processes. By accurately capturing the complex in-
terplay between particle dynamics, liquid binding, and aggregation
kinetics, this framework offers valuable insights for optimizing granula-
tion processes in pharmaceutical and chemical industries. The proposed
PBM-DEM coupling framework not only enhances the predictive ca-
pabilities for granulation processes but also opens avenues for further
research and application in pharmaceutical manufacturing. The impli-
cations of this work are profound, promising improved efficiency and
efficacy in drug formulation and production.
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