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ABSTRACT 

This study presents a semi-analytical solution for modeling suspended sediment distribution in turbulent flows within ice-covered 
channels under unsteady, non-equilibrium conditions. The solution is derived using the generalized integral transform technique 
(GITT). Validation was performed against the cell-centered finite volume method and existing experimental data. The results 
confirm high accuracy, supported by error analysis. Optimized parameter values were obtained through a hybrid genetic and 
interior point algorithm. Several underlying phenomena of particle-turbulence interactions in ice-covered channels are explored. 
The focus is on the influence of key sediment transport parameters on the time-dependent evolution of vertical concentration 
profiles of suspended sediment particles. Key findings indicate that increasing the settling-velocity correction coefficient raises 
sediment concentration profiles over time. In contrast, greater ice-cover roughness reduces sediment suspension. Sensitivity 
analysis highlights the inverse of the Schmidt number as a critical factor. This novel application of GITT and variance-based 
sensitivity analysis (VBSA) provides a detailed solution library, and serves as a benchmark for numerical models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Introduction 

In regions with freezing temperatures, ice-covered channels can
be natural or artificial. These channels have unique geometries
and hydraulic behaviors compared to open channels. Such char-
acteristics significantly influence sediment transport [ 1–5 ]. The
role of ice cover in sediment dynamics is not well understood.
This knowledge gap limits its application in hydraulic infrastruc-
ture design [ 1 ] and increases the risk of structural damage in
freezing environments [ 6 ]. A detailed understanding of sediment
transport in ice-covered channels is essential. It is key to improv-
ing management strategies and making accurate predictions. 

Flow in an ice-covered channel is fully developed, asymmetric,
and turbulent. This is due to differing hydraulic roughness at the
© 2025 John Wiley & Sons Ltd. 
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top and bottom boundaries [ 7 ]. Turbulence from both boundaries
mixes across the flow depth. This mixing is most noticeable
within the central core. It affects sediment transport [ 7 ]. Ice cover
increases resistance and reduces bulk flow velocity. It amplifies
total boundary shear stress and redistributes it between the
boundaries. This redistribution impacts bed load transport by 
altering drag on the channel bed [ 8 ]. It also affects suspended load
transport by modifying turbulent diffusivity [ 9 ]. 

Suspended sediment transport is different from bed-load trans-
port, as it is vertically dispersed by turbulence. It plays a
critical role in shaping water bodies, geological formations, and
engineering applications. Accurate prediction of suspended sedi- 
ment dynamics is essential. Extensive research has investigated 
suspended sediment in open-channel flows [ 10–19 ], including
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experimental, analytical, semi-analytical, and numerical studies.
In a recent study, Zhang et al. [ 20 ] derived an analytical solution
for the vertical distribution of suspended sediment concentra-
tion under unsteady conditions and proposed an optimization
framework for simultaneously estimating the governing physical
parameters. Recent studies have also highlighted the growing
role of statistical learning approaches in suspended sediment
transport. Temporal LASSO regression has been employed by
Zhang et al. [ 21 ] for suspended sediment concentration forecast-
ing, providing high accuracy and interpretable variable selec-
tion. Augmented lncosh ridge regression with empirical mode
decomposition was applied by Zhang et al. [ 22 ] for suspended
sediment concentration predictions using suspended sediment
concentration-only data, effectively handling outliers and tem-
poral correlations. Decomposition-based regression frameworks
have been used by Zhang et al. [ 23 ] to infer sediment transport
parameters from field suspended sediment concentration time
series, incorporating stormwave and tidal effects. However, stud-
ies on ice-covered channels, whether experimental, analytical,
semi-analytical, or numerical, remain limited. This limitation is
due to their complex flow characteristics. 

Sayre and Song [ 8 ] conducted flume experiments to study the
impact of ice cover. They divided the flow into upper ice and lower
bed layers. Maximum streamwise velocity and zero turbulent
shear stress were observed at their junction. Krishnappan [ 24 ]
used the 𝑘 − 𝜖model to derive momentum diffusivity and develop
sediment concentration profiles. Their results showed lower
relative sediment concentration in ice-covered flows compared
to open flows under similar conditions. Further reductions were
observed as the ice-to-bed roughness ratio increased. Lau and
Krishnappan [ 25 ] extended this approach to analyze sediment
concentration and velocity distribution in ice-covered channels.
Numerical models by Knack [ 26 ] and Huang [ 27 ] incorporated
hydro-thermo-ice-sediment dynamics. These models were used
to study sediment transport in curved channels. Knack and Shen
[ 28 ] modified the Rouse formula. They integrated the effects of
ice cover on velocity and diffusion to estimate sediment transport
rates. Wang et al. [ 29 ] developed a steady one-dimensional
(1D) model for sediment concentration in ice-covered alluvial
channels. This model solved the Schmidt–O’Brian equation with
established settling velocity and diffusivity formulations. Wang
et al. [ 1 ] developed a random displacement model for sediment
transport in ice-covered alluvial channels. Wang et al. [ 30 ] pro-
posed an equation to capture the nonlocal transport of sediment
particles in steady, uniform, ice-covered channel flows. This
equation was based on a steady fractional advection-diffusion
framework. Huai et al. [ 31 ] estimated the suspended sediment
concentration in ice-covered channels using gravitational theory.
Sahu et al. [ 32 ] analyzed time-dependent sediment concentration
under steady uniform flow in an ice-covered channel. They used
a numerical finite difference scheme for their analysis. Sahu et al.
[ 33 ] employed a fractional advection–diffusion equation (fADE).
This was used to numerically predict suspension concentration
in an ice-covered channel. Sahu and Ghoshal [ 34 ] recently
employed a semi-analytical approach based on the Riccati equa-
tion to solve a steady, one-dimensional coupled model of velocity
and suspension concentration in an ice-covered channel. Their
formulation considers variation only in the vertical direction and
neglects temporal dependence, thereby reducing the governing
equations to a set of ordinary differential equations (ODEs). 
2 of 23
The analytical model by Sayre and Song [ 8 ] is predictive but has
limitations. It requires prior knowledge of the streamwise velocity
profile. It also assumes a less rigorous linear trend for the tur-
bulent diffusion coefficient. Additionally, its diffusion coefficient 
components are not unified into a single equation. Wang et al.
[ 29 ] improved upon this model. Their approach offered better
predictions of concentration distribution in suspension regions. 
However, both models are steady and one-dimensional, and rely
on simple ODEs that are easy to solve. Numerical models by
Krishnappan [ 24 ] and Lau and Krishnappan [ 25 ] are accurate but
demand significant computational effort. They also lack clarity 
on the physical factors influencing sediment concentration. Sim- 
ilarly, the hydro-thermo-ice-sediment models by Khader [ 35 ] and
Huang [ 27 ] are complex. These models require extensive calcula-
tions. The recent unsteady two-dimensional (2D) and 1D models
by Sahu et al. [ 32 ] and Sahu et al. [ 33 ] offer valuable insights.
However, they rely on numerical methods that are prone to
errors. More recently, Sahu et al. [ 36 ] obtained an analytical solu-
tion of a one-dimensional time-fractional advection–diffusion 
equation using Laplace and Fourier transforms to investigate 
the time-dependent memory effects of particles in ice-covered 
channel flows. 

To date, analytical and semi-analytical models based on classical
calculus theory for suspension concentration in ice-covered 
channels have been mostly limited to steady, one-dimensional
frameworks. This limitation is due to the complexity of solving
partial differential equations (PDEs) with time-dependent com- 
ponents. This study addresses this gap. It applies the generalized
integral transform technique (GITT) to solve an unsteady 1D
suspended sediment transport problem in an ice-covered channel 
flow. Solving PDEs analytically is not straightforward. However, 
addressing an unsteady one-dimensional model analytically or 
semi-analytically can provide deep insights. It can also contribute
to the development of new ideas. GITT [ 37–39 ] is chosen due
to its flexibility in constructing integral transform pairs. These
pairs include forward and inverse transforms. GITT also allows
for relative ease in mathematically manipulating these resulting
pairs. The use of GITT for sediment transport in turbulent flows
is limited. Liu and Nayamatullah [ 13 ] derived a semi-analytical
solution for unsteady 1D transport. Similarly, Liu [ 40 ] devel-
oped an analytical solution for steady 2D suspended sediment
transport. Both studies focused on turbulent flow conditions. 
However, they were restricted to open channel configurations.
Similar applications of such problems can be observed in atmo-
spheric sciences. Studies like Wortmann et al. [ 41 ], Costa et al.
[ 42 ], Moreira et al. [ 43 ], Buske et al. [ 44 ], and Cassol et al.
[ 45 ] used GITT for their solution methodologies. These studies
simulated pollutant dispersion in the planetary boundary layer. It
is pertinent to note that although analytical and semi-analytical
solutions have long been fundamental in sediment and hydraulic
engineering, their applicability is often limited by simplifying
assumptions required to represent complex flow environments 
[ 46 ]. More recently, Zhang et al. [ 46 ] explored the use of physics-
informed neural networks (PINNs) for one-dimensional vertical 
(1DV) suspended sediment concentration, offering a framework 
free from the discretization errors and approximations inherent 
in conventional numerical methods. 

The primary objectives of this study are as follows: (i) to present a
semi-analytical solution for an unsteady one-dimensional model 
International Journal for Numerical and Analytical Methods in Geomechanics, 2025

C
om

m
ons L

icense



FIGURE 1 Schematic diagram of an ice-covered channel transporting suspended sediment particles (adapted from Wang et al. [ 29 ]). 
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to predict the temporal evolution of suspended concentration
profiles in turbulent flow within a wide ice-covered channel using
GITT, (ii) to validate the proposed GITT solution by comparing
it with a cell-centered finite volume method, (iii) to analyze
the impact of various hydraulic parameters on concentration
magnitudes, (iv) to assess the capability of the proposed model to
accurately predict available experimental data, and (v) to estimate
optimized values and conduct sensitivity analyses of key sediment
transport parameters based on available observations, facilitating
easier applicability of the model. 

It is generally acknowledged that ice-covered turbulent flows are
inherently complex and three-dimensional. However, the present
study focuses on developing a one-dimensional unsteady vertical
transport model to capture the essential features of sediment
transport under an ice cover in a computationally efficient man-
ner. The one-dimensional vertical approach allows us to isolate
and analyze the dominant vertical diffusion processes influenced
by the ice cover while avoiding the high computational cost and
data requirements associated with fully three-dimensional mod-
eling. This simplification is particularly suitable for examining
the time-dependent variation of suspended sediment concentra-
tion. Nevertheless, we acknowledge that this assumption limits
the model’s ability to represent various turbulent structures that
may arise in natural ice-covered channels. These effects can
influence sediment dynamics, especially in non-uniform geome-
tries or near channel boundaries. Therefore, the present model
should be viewed as a foundational framework that provides
physical insight into vertical transport mechanisms and can be
further extended or coupled with higher-dimensional models in
future studies. 

2 Problem Description 

2.1 Governing Equation 

The investigation commences by considering the following
unsteady 1D mathematical model depicting the transport of
suspended sediment within an ice-covered channel (see Figure 1 ):

𝜕 𝑆 ( 𝑌, 𝑇 ) 

𝜕𝑇 
− 𝜕 

𝜕𝑌 

[ 𝜔( 𝑌 ) 𝑆( 𝑌 , 𝑇)] = 𝜕 

𝜕𝑌 

[ 
𝜈( 𝑌)

𝜕 𝑆 ( 𝑌, 𝑇 ) 

𝜕𝑌 

] 
. (1)
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In Equation ( 1 ), 𝑆 denotes the concentration of suspended sedi-
ment (mg/L), 𝑇 represents time (s), 𝜔( 𝑌) denotes the downward
velocity of sediment settling (m/s), and 𝜈( 𝑌) stands for the
sediment diffusion coefficient ( m 

2 ∕s ). Both 𝜔( 𝑌) and 𝜈( 𝑌) are
assumed to be functions solely dependent on the vertical coordi-
nate 𝑌 (m). To derive the concentration profile from Equation ( 1 ),
it is necessary to discern the spatial variations of the sediment
diffusion coefficient, 𝜈( 𝑌) , and the sediment settling velocity,
𝜔( 𝑌) . As illustrated in Figure 1 , a turbulent stream of water first
enters an erodible sediment bed within an ice-covered channel. It
then interacts with the sediment particles, causing them to diffuse
into the main turbulent flow until equilibrium is achieved. 

The sediment diffusion coefficient, 𝜈( 𝑌) , is commonly associ-
ated with the turbulent diffusion coefficient, 𝜈𝑡 ( 𝑌) , through a
dimensionless constant referred to as the inverse of the turbulent
Schmidt number, denoted by Λ. This relationship is expressed as
follows [ 24 ]: 

𝜈( 𝑌) = Λ𝜈𝑡 ( 𝑌) . (2) 

In the study of flow within an ice-covered channel, the disparity
in roughness between the channel bed and the ice cover necessi-
tates the consideration of two distinct sets of length and velocity
scales governing turbulent mixing. Guo et al. [ 47 ] amalgamated
these scales into a unified equation and proposed the ensuing
expression for the turbulent diffusion coefficient 𝜈𝑡 ( 𝑌) as 

𝜈𝑡 ( 𝑌) = 2 𝜅𝐻𝑈∗ 𝐵 𝛽
𝑌 

𝐻 

( 

1 − 𝑌 

𝐻 

) 

[ 

1 + 𝛼

( 

𝑌∕𝐻 

𝑦𝑐 
− 1

) 2 
] 

, (3) 

where 𝜅( = 0 . 40) represents the von Karman constant, 𝐻 signifies
the total flow depth (m), 𝑦𝑐 ( = 1∕(1 + 𝜆𝑛 )) denotes the critical
position of the turbulent diffusion coefficient, where 𝑛 = 5∕6

and 𝜆( = 𝑈∗ 𝐼 ∕𝑈∗ 𝐵 ) stands for a dimensionless parameter. Here,
𝑈∗ 𝐵 and 𝑈∗ 𝐼 refer to the shear velocity of the lower bed layer
and upper ice layer (m/s), respectively. Additionally, 𝛽 = ( 𝜆 −
𝜆2 𝑛 )∕2(1 − 𝜆2 𝑛 ) and 𝛼 = (1 − 𝜆)∕( 𝜆 − 𝜆2 𝑛 ) . 

In consideration of the sediment settling velocity 𝜔( 𝑌) , this
study adopts the modified formulation proposed by Wang et al.
[ 29 ] based on Lorentz [ 48 ], which accounts for the combined
influences of the upper ice cover and the lower channel bed
3 of 23

C
om

m
ons L

icense



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 10969853, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nag.70192 by Indian Institute O

f T
echnology, W

iley O
nline L

ibrary on [12/01/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative 
boundaries, expressed as follows: 

𝜔( 𝑌 ) =
𝜔0 ( 𝑌 ∕𝐻 ) 

( 𝑌 ∕𝐻 ) + 𝜎( 𝐷𝑚 ∕𝐻) 
, (4)

where 𝜔0 represents the settling velocity of sediment particles
in an infinite flow field (m/s), 𝜎 stands for the dimensionless
correction coefficient, and 𝐷𝑚 denotes the median diameter
of sediment particles (mm). As per Zhang et al. [ 49 ], the
mathematical expression for 𝜔0 can be stated as follows: 

𝜔0 =

√ ( 

13 . 95
𝜈𝑤 
𝐷𝑚 

) 2 

+ 1 . 09
𝛾𝑠 − 𝛾𝑤 
𝛾𝑤 

𝑔𝐷𝑚 − 13 . 95
𝜈𝑤 
𝐷𝑚 

, (5)

where 𝜈𝑤 represents the kinematic viscosity of clear water ( m 

2 ∕s ),
while 𝛾𝑤 and 𝛾𝑠 denote the specific weights of clear water
and sediment, respectively ( N ∕m 

3 ). Additionally, 𝑔 signifies the
acceleration due to gravity ( m ∕s 2 ). 

Equation ( 1 ) is subjected to the following initial and boundary
conditions. It is assumed that, initially, the flow is devoid of
sediment, i.e., 

𝑆( 𝑌, 𝑇 = 0) = 0 . (6)

At the ice cover, we have assumed a zero sediment-concentration
boundary condition, i.e., 

𝑆 ( 𝑌 = 𝐻, 𝑇 ) = 0 , at 𝑌 = 𝐻. (7)

At the bottom, at a reference level 𝑌 = 𝐴, a fixed reference
concentration is prescribed as 

𝑆 ( 𝑌 = 𝐴, 𝑇 ) = 𝑆𝐴 , at 𝑌 = 𝐴, (8)

where 𝐴 represents the reference height (m), while 𝑆𝐴 denotes
the reference concentration (mg/L). 

2.2 Description of Various Coefficients 

To utilize Equation ( 1 ) for calculating concentration distribu-
tion in an ice-covered channel, one needs to ascertain the
values of several coefficients: the shear velocity of the lower
bed layer, 𝑈∗ 𝐵 ; shear velocity of the upper ice layer, 𝑈∗ 𝐼 ; the
characteristic parameter 𝜆; the correction coefficient 𝜎; and the
inverse of the turbulent Schmidt number Λ. The subsequent
section delineates the detailed procedures for determining these
physical coefficients. 

In investigations of flow within ice-covered channels, the two-
layer hypothesis is commonly employed to partition the flow
beneath the floating ice covers into two pseudo-free surface flows
[ 8, 50 ]. As depicted in Figure 1 , these two layers correspond to
the upper ice layer and the lower bed layer, with their interface
positioned at the location of the maximum stream-wise velocity.
The flow characteristics within each layer are predominantly
influenced by the roughness properties of the ice cover and the
channel bed, respectively. The relationship between the flow
depth of the lower bed layer and the total flow depth can be
4 of 23

C

represented as [ 51 ] 

𝐻 

𝐻𝐵 
=
𝑚𝐼 + 𝑚𝐵 

𝑚𝐼 

. (9) 

Here, 𝐻𝐵 represents the flow depth of the lower bed layer (m),
indicating the distance from the channel bed bottom to the plane
of maximum streamwise velocity. The parameters 𝑚𝐼 and 𝑚𝐵 are 
dimensionless and are associated with the roughness of the ice
cover and channel bed, respectively. Tsai and Ettema [ 51 ] provide
the following expressions for 𝑚𝐼 and 𝑚𝐵 : 

𝑚𝐼 = 𝜅

√ 

8 

𝑓𝐼 
, (10) 

and 

𝑚𝐵 = 𝜅

√ 

8 

𝑓𝐵 
, (11) 

where 𝑓𝐼 and 𝑓𝐵 represent the Darcy–Weisbach resistance factors 
for the upper ice cover and lower bed layer, respectively. Through
the combination of the Chezy formula with the Manning formula,
the resistance factors 𝑓𝐼 and 𝑓𝐵 can be derived as shown in the
following equation [ 29 ]: 

𝑓𝐼 =
8 𝑔 𝑛2 𝐼 

𝑅
1∕3 

𝐼 

, (12) 

and 

𝑓𝐵 =
8 𝑔 𝑛2 𝐵 

𝑅
1∕3 

𝐵 

, (13) 

where 𝑛𝐼 and 𝑛𝐵 denote Manning’s roughness coefficients 
pertaining to the ice cover and channel bed, respectively. Addi-
tionally, 𝑅𝐼 and 𝑅𝐵 represent the hydraulic radii of the upper ice
layer and lower bed (m), respectively. According to Wang et al.
[ 52 ], 𝑅𝐼 and 𝑅𝐵 are related by the following relationship: 

𝑅𝐼 = 𝑅𝐵 

√ 

𝑛3 𝐼 

𝑛3 𝐵 
. (14) 

The combination of Equations ( 12 )–( 14 ) results in the following
relationship: 

𝑓𝐼 = 𝑓𝐵 

√ 

𝑛3 𝐼 

𝑛3 𝐵 
. (15) 

Therefore, by substituting Equations ( 10 ), ( 11 ), and ( 15 ) into
Equation ( 9 ), Equation ( 9 ) transforms into: 

𝐻𝐵 =
𝐻 

1 + ( 𝑛𝐼 ∕𝑛𝐵 ) 
3∕4 
. (16) 

The flow depth 𝐻𝐼 represents the difference between the total
flow depth and the flow depth of the lower bed layer. Therefore,
𝐻𝐼 = 𝐻 − 𝐻𝐵 , which can be formulated as follows: 

𝐻𝐼 =
𝐻 

1 + ( 𝑛𝐵 ∕𝑛𝐼 ) 
3∕4 
. (17) 
International Journal for Numerical and Analytical Methods in Geomechanics, 2025
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Considering that the flows in the upper ice layer and the lower
bed layer are typically regarded as two pseudo-free-surface flows,
the shear velocities 𝑈∗ 𝐼 and 𝑈∗ 𝐵 of these layers can be determined
through momentum balance, akin to the approach utilized in
uniform open-channel flow [ 7, 25 ]: 

𝑈∗ 𝐼 =
√
𝑔𝑠𝐵 𝐻𝐼 , (18)

and 

𝑈∗ 𝐵 =
√
𝑔𝑠𝐵 𝐻𝐵 , (19)

where 𝑠𝐵 denotes the bed slope of the channel. Utilizing Equa-
tions ( 16 ) and ( 17 ) in conjunction with Equations ( 19 ) and ( 18 )
yields the following expressions: 

𝑈∗ 𝐼 =
√ 

𝑔𝑠𝐵 𝐻 

1 + ( 𝑛𝐵 ∕𝑛𝐼 ) 
3∕4 
, (20)

and 

𝑈∗ 𝐵 =
√ 

𝑔𝑠𝐵 𝐻 

1 + ( 𝑛𝐼 ∕𝑛𝐵 ) 
3∕4 
. (21)

By employing Equations ( 20 ) and ( 21 ), the dimensionless charac-
teristic parameter 𝜆, defined as 𝜆 = 𝑈∗ 𝐼 ∕𝑈∗ 𝐵 , can be expressed as
follows: 

𝜆 =
√ 

( 𝑛𝐼 ∕𝑛𝐵 ) 
3∕4 
. (22)

Aside from the coefficients previously mentioned, both the
correction coefficient 𝜎 for the sediment settling velocity and
the inverse of the Schmidt number Λ are regarded as free
characteristic parameters. These parameters necessitate empir-
ical calibration to optimize the agreement with the available
experimental suspended sediment concentration data. 

3 Solution Methodology 

This section outlines the methodology employed for solving the
current model. Initially, a semi-analytical solution is obtained
using GITT. Subsequently, a numerical solution is pursued using
the cell-centered finite volume method to validate the semi-
analytical solution obtained. All the calculations are performed
in the MATLAB environment. Prior to this, the equations of the
present model have been condensed into a compact form for the
sake of simplicity. Upon substituting Equations ( 3 ) and ( 4 ) into
Equation ( 1 ), it reduces to the following: 

𝜕 𝑆 ( 𝑦 , 𝑇 ) 

𝜕𝑇 
− 𝜕 

𝜕𝑦 

[ 
1 

𝐻 

𝜔0 𝑦 

𝑦 + 𝜎𝑦𝐷 
𝑆 ( 𝑦 , 𝑇 )

] 

= 𝜕 

𝜕𝑦 

[ 

1 

𝐻 

2Λ𝜅𝑈∗ 𝐵 𝛽𝑦(1 − 𝑦)
{ 

1 + 𝛼

( 

𝑦 

𝑦𝑐 
− 1

) 2 } 𝜕𝑆( 𝑦, 𝑇) 

𝜕𝑦 

] 

,

(23)

where 𝑦 = 𝑌 ∕𝐻 and 𝑦𝐷 = 𝐷𝑚 ∕𝐻 . To express the aforementioned
equation in a more concise form, let us introduce the following
International Journal for Numerical and Analytical Methods in Geomechanics, 2025
variables. 

𝑉( 𝑦) = 1 

𝐻 

𝜔0 𝑦 

𝑦 + 𝜎𝑦𝐷 
, (24) 

and 

𝐾( 𝑦 ) = 1 

𝐻 

2Λ𝜅𝑈∗ 𝐵 𝛽𝑦 (1 − 𝑦)

{ 

1 + 𝛼

( 

𝑦 

𝑦𝑐 
− 1

) 2 
} 

. (25) 

By utilizing Equations ( 24 ) and ( 25 ) within Equation ( 23 ), one can
get the following: 

𝜕 𝑆 ( 𝑦 , 𝑇 ) 

𝜕𝑇 
− 𝜕 

𝜕𝑦 
[ 𝑉( 𝑦 ) 𝑆 ( 𝑦 , 𝑇 )] = 𝜕 

𝜕𝑦 

[ 
𝐾( 𝑦 )

𝜕 𝑆 ( 𝑦 , 𝑇 ) 

𝜕 𝑦 

] 
. (26) 

Additionally, the aforementioned equation can be further simpli-
fied as follows: 

𝜕 𝑆 ( 𝑦 , 𝑇 ) 

𝜕𝑇 
= 𝐾( 𝑦 )

𝜕2 𝑆 ( 𝑦 , 𝑇 ) 

𝜕 𝑦2 
+

[ 
𝜕 𝐾( 𝑦 ) 

𝜕 𝑦 
+ 𝑉( 𝑦 )

] 
𝜕 𝑆 ( 𝑦 , 𝑇 ) 

𝜕 𝑦 

+
𝜕 𝑉( 𝑦 ) 

𝜕𝑦 
𝑆 ( 𝑦 , 𝑇 ) . (27) 

The initial and boundary conditions, represented by Equa- 
tions ( 6 )–( 8 ) respectively, can be reformulated as follows: 

𝑆 ( 𝑦 , 𝑇 = 0) = 0 , (28) 

𝑆 ( 𝑦 = 1 , 𝑇 ) = 0 , at 𝑦 = 1 , (29) 

and 

𝑆 ( 𝑦 = 𝑎, 𝑇 ) = 𝑆𝑎 , at 𝑦 = 𝑎. (30) 

Here, 𝑆𝑎 denotes the reference concentration at the non- 
dimensional reference height 𝑎, where 𝑎( = 𝐴∕𝐻) . 

3.1 Semi-Analytical Solution Using GITT 

In order to utilize GITT [ 37, 38 ], it is imperative that the boundary
conditions exhibit homogeneity, a condition that is not satisfied
in Equation ( 30 ). The standard approach involves rendering it
homogeneous through the following decomposition: 

𝑆 ( 𝑦 , 𝑇 ) = 𝑈( 𝑦 , 𝑇 ) + 𝑓 ( 𝑦 ) , (31) 

wherein 𝑓 ( 𝑦 ) fulfills the following differential equation: 

0 = 𝐾( 𝑦 )
𝑑2 𝑓 ( 𝑦 ) 

𝑑𝑦2 
+

[ 
𝑑𝐾( 𝑦 ) 

𝑑𝑦 
+ 𝑉( 𝑦 )

] 
𝑑𝑓 ( 𝑦 ) 

𝑑𝑦 
+
𝑑𝑉( 𝑦 ) 

𝑑𝑦 
𝑓 ( 𝑦 ) , (32) 

subject to the boundary conditions: 

𝑓( 𝑦 = 1) = 0 , at 𝑦 = 1 , (33) 

and 

𝑓( 𝑦 = 𝑎) = 𝑆𝑎 , at 𝑦 = 𝑎. (34) 

Equation ( 32 ) represents a second-order linear ODE for 𝑓 ( 𝑦 ) ,
the solution of which is contingent upon the specific functional
5 of 23
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expressions of the turbulent diffusion coefficient, denoted as
𝐾( 𝑦) , and the settling velocity, 𝑉( 𝑦) . In the study of Wang
et al. [ 29 ], a similar type of steady solution was presented,
corresponding to a one-dimensional ODE with a Dirichlet bound-
ary condition specifying the reference concentration at a given
reference height. 

The governing equation for 𝑈( 𝑦 , 𝑇 ) mirrors Equation ( 27 ), shar-
ing identical boundary conditions as described in Equations ( 29 )
and ( 30 ), albeit with the right-hand side now being equated
to zero for both equations. The initial condition for 𝑈( 𝑦 , 𝑇 ) is
expressed as: 

𝑈( 𝑦, 𝑇 = 0) = − 𝑓( 𝑦) . (35)

The function 𝑈( 𝑦 , 𝑇 ) is defined over the interval 𝑦 ∈ [ 𝑎, 1] . To
facilitate mathematical derivation, the spatial domain is stretched
through the following mapping: 

𝑧 =
𝑦 − 𝑎 

1 − 𝑎 
. (36)

As a consequence of this mapping, the domain of 𝑦 is transformed
to [0,1]. Consequently, the governing equation for 𝑈( 𝑦 , 𝑇 ) is
altered to 

𝜕 𝑈( 𝑧, 𝑇 ) 

𝜕𝑇 
= 𝐾( 𝑧) 

(1 − 𝑎) 
2 

𝜕2 𝑈( 𝑧, 𝑇) 

𝜕𝑧2 

+
[ 

1 

1 − 𝑎 

𝜕𝐾( 𝑧) 

𝜕𝑧 
+ 𝑉( 𝑧)

] 
1 

1 − 𝑎 

𝜕 𝑈( 𝑧, 𝑇 ) 

𝜕𝑧 

+ 1 

1 − 𝑎 

𝜕𝑉( 𝑧) 

𝜕𝑧 
𝑈( 𝑧, 𝑇) , (37)

with the boundary conditions 

𝑈( 𝑧 = 1 , 𝑇) = 0 , at 𝑧 = 1 , (38)

and 

𝑈( 𝑧 = 𝑎, 𝑇) = 0 , at 𝑧 = 0 . (39)

To address the current problem outlined in Equation ( 37 ) using
GITT, it is necessary to employ a pair of transforms, namely
an integral transform. For this particular problem, we opt for a
specific auxiliary problem due to its simplicity, which facilitates
the construction of the required pair of transforms [ 37, 38 ]: 

𝑑2 𝜓𝑛 ( 𝑧) 

𝑑𝑧2 
+ 𝛽2 𝑛 𝜓𝑛 ( 𝑧) = 0 , in 0 ≤ 𝑧 ≤ 1 , (40)

with the boundary conditions 

𝜓𝑛 ( 𝑧) = 0 , at 𝑧 = 1 , (41)

and 

𝜓𝑛 ( 𝑧) = 0 , at 𝑧 = 0 , (42)

where 𝛽𝑛 denotes the 𝑛𝑡 ℎ eigenvalue, while 𝜓𝑛 ( 𝑧) represents the
corresponding eigenfunction. With this boundary constraint, the
auxiliary problem defined by Equation ( 40 ) admits the following
6 of 23
eigenfunction: 

𝜓𝑛 ( 𝑧) =
sin ( 𝛽𝑛 𝑧) √

𝑁𝑛 
, (43) 

where the normalization factor is defined as 𝑁𝑛 = 1∕2 . The eigen
values are 𝛽𝑛 = 𝑛𝜋. 

An essential property of the eigen system defined previously is
orthogonality, which is expressed as: 

∫
1 

0 

𝜓𝑛 ( 𝑧 ) 𝜓𝑚 ( 𝑧 ) 𝑑𝑧 =

{ 

0 , if 𝑛 ≠ 𝑚 , 

1 , if 𝑛 = 𝑚 . 
(44) 

With the eigenfunctions of the system established, we proceed to
formulate the forward transform as: 

𝑆̄𝑛 ( 𝑇) = ∫
1 

0 

𝑈( 𝑧 , 𝑇) 𝜓𝑛 ( 𝑧 ) 𝑑𝑧 , (45) 

along with its corresponding inverse transform: 

𝑈( 𝑧, 𝑇) =
∞∑
𝑛= 1 
𝑆̄𝑛 ( 𝑇) 𝜓𝑛 ( 𝑧) . (46) 

From a computational perspective, the inverse transform is 
truncated at its 𝑁-th term, with 𝑁 chosen sufficiently large to
achieve the desired level of accuracy. Substituting Equation ( 46 )
into Equation ( 37 ) yields 

∞∑
𝑛= 1 

𝑑𝑆̄𝑛 ( 𝑇) 

𝑑𝑇 
𝜓𝑛 ( 𝑧) =

∞∑
𝑛= 1 

𝐾( 𝑧) 

(1 − 𝑎) 
2 
𝑆̄𝑛 ( 𝑇)

𝑑2 𝜓𝑛 ( 𝑧) 

𝑑𝑧2 

+
[ 

1 

1 − 𝑎 

𝜕𝐾( 𝑧) 

𝜕𝑧 
+ 𝑉( 𝑧)

] 
1 

1 − 𝑎 

∞∑
𝑛= 1 
𝑆̄𝑛 ( 𝑇)

𝑑𝜓𝑛 ( 𝑧) 

𝑑𝑧 

+ 1 

1 − 𝑎 

𝜕𝑉( 𝑧) 

𝜕𝑧 

∞∑
𝑛= 1 
𝑆̄𝑛 ( 𝑇) 𝜓𝑛 ( 𝑧) . (47) 

Integrating both sides of the above equation within the domain
(0,1) and leveraging the property 𝑑

2 𝜓𝑛 ( 𝑧) 

𝑑𝑧2 
= − 𝛽2 𝑛 𝜓𝑛 ( 𝑧) , one can

derive the ensuing system of ordinary differential equations: 

∞∑
𝑛= 1 

𝑑𝑆̄𝑛 ( 𝑇) 

𝑑𝑇 ∫
1 

0 

𝜓𝑛 ( 𝑧 ) 𝜓𝑚 ( 𝑧 ) 𝑑𝑧 

= −
∞∑
𝑛= 1 
𝑆̄𝑛 ( 𝑇) 𝛽

2 
𝑛 ∫

1 

0 

𝐾( 𝑧) 

(1 − 𝑎) 
2 
𝜓𝑛 ( 𝑧 ) 𝜓𝑚 ( 𝑧 ) 𝑑𝑧 

+
∞∑
𝑛= 1 
𝑆̄𝑛 ( 𝑇 )∫

1 

0 

[ 
1 

1 − 𝑎 

𝜕 𝐾( 𝑧) 

𝜕 𝑧 
+ 𝑉( 𝑧)

] 
1 

1 − 𝑎 

𝑑𝜓𝑛 ( 𝑧) 

𝑑𝑧 
𝜓𝑚 ( 𝑧) 𝑑𝑧 

+
∞∑
𝑛= 1 
𝑆̄𝑛 ( 𝑇 )∫

1 

0 

1 

1 − 𝑎 

𝜕 𝑉( 𝑧) 

𝜕 𝑧 
𝜓𝑛 ( 𝑧 ) 𝜓𝑚 ( 𝑧 ) 𝑑𝑧 , 

for 𝑚 = 1 , 2 , 3 , . . . . (48) 

Likewise, the initial condition for 𝑈( 𝑧, 𝑇) can be transformed to 

𝑆̄𝑚 (0) = ∫
1 

[0 − 𝑓( 𝑧 )] 𝜓𝑚 ( 𝑧 ) 𝑑𝑧 , for 𝑚 = 1 , 2 , 3 , . . . . (49) 
International Journal for Numerical and Analytical Methods in Geomechanics, 2025
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The system of ODEs along with the initial condition can be
expressed in matrix form as 

𝑨
𝑑𝑺 ( 𝑇) 

𝑑𝑇 
= 𝑮𝑺 ( 𝑇) , 𝑺 ( 𝑇 = 0) = 𝑺0 , (50)

where the vectors 𝑺 ( 𝑇) = 𝑆̄𝑚 ( 𝑇) and 𝑺0 ( 𝑇) = 𝑆̄𝑚 (0) , and the
matrix 𝑨 represents an identity matrix owing to the orthonor-
mality of the eigenvectors. The matrix 𝑮 = { 𝑔𝑚𝑛 } is defined as

𝑔𝑚𝑛 = − 𝛽2 𝑛 ∫
1 

0 

𝐾( 𝑧) 

(1 − 𝑎) 
2 
𝜓𝑛 ( 𝑧 ) 𝜓𝑚 ( 𝑧 ) 𝑑𝑧 

+ ∫
1 

0 

{ 

1 

1 − 𝑎 

𝜕𝐾( 𝑧) 

𝜕𝑧 
+ 𝑉( 𝑧)

} 

1 

1 − 𝑎 

𝑑𝜓𝑛 ( 𝑧) 

𝑑𝑧 
𝜓𝑚 ( 𝑧) 𝑑𝑧 

+ ∫
1 

0 

1 

1 − 𝑎 

𝜕𝑉( 𝑧) 

𝜕𝑧 
𝜓𝑛 ( 𝑧 ) 𝜓𝑚 ( 𝑧 ) 𝑑𝑧 . (51)

In general, to compute the matrix 𝑮 , one initially solves the
eigenvalue problem outlined in Equations ( 40 )–( 42 ) to obtain the
eigenvectors 𝜓𝑛 and eigenvalues 𝛽𝑛 . Subsequently, by substituting
the diffusivity distribution 𝐾( 𝑧) and settling velocity 𝑉( 𝑧) into
Equation ( 51 ) and performing integration (either analytically
or numerically), each entry of the matrix can be determined.
The resulting ODE system is linear and homogeneous. This
initial value problem for the coupled ODE system can be effec-
tively solved either analytically or numerically. Upon solving
the set of coupled first-order differential equations described
by Equation ( 50 ), the inverse formula (Equation ( 46 )) can be
invoked to compute 𝑈( 𝑧, 𝑇) , while Equation ( 31 ) can be utilized
to compute the concentration 𝑆 ( 𝑦 , 𝑇 ) . The detailed intermediate
mathematical derivations associated with the semi-analytical
solution are provided in Appendix A. 

3.2 Numerical Solution Using Cell-Centered 

FVM 

To implement the cell-centered finite volume method (FVM), we
commence by defining Equation ( 1 ) as the governing equation.
The computational domain Ω( = [ 𝑎, 1]) is discretized into a set of
non-overlapping control volumes (or cells), denoted as Ω𝑖 ⊂ Ω,
where 𝑖 = 1 , 2 , . . . , 𝑛𝑐 𝑒 𝑙𝑙 . We have opted for a cell-centered and
uniform discretization strategy for the computational domain.
In this approach, the grid point or computational node for each
cell is positioned at the cell center. The boundaries (or faces)
of the cells are situated midway between adjacent nodes. The
one-dimensional computational domain, where the governing
equation is to be solved, is depicted in Figure 2 . A typical
nodal point is labeled as 𝑖, while its neighboring nodes in one-
dimensional geometry are denoted as 𝑖 − 1 to the south and 𝑖 + 1

to the north. The south side face center of the cell is denoted
by 𝑖 − 1∕2 , and the north side cell face center by 𝑖 + 1∕2 . The
distances between the nodes 𝑖 − 1 and 𝑖, and between nodes 𝑖
and 𝑖 + 1 , are denoted by Δ𝑦. Similarly, the distances between the
face center 𝑖 − 1∕2 and point 𝑖, and between 𝑖 and face center
𝑖 + 1∕2 , are represented by (Δ𝑦)∕2 . The cell size is determined
as Δ𝑦 = (1 − 𝑎)∕ 𝑛𝑐 𝑒 𝑙𝑙 . The detailed discretization procedure is
provided in Appendix B. 
International Journal for Numerical and Analytical Methods in Geomechanics, 2025
4 Results and Discussion 

This section is structured as follows: First, the derived semi-
analytical solution using GITT is validated against the cell-
centered f inite volume method. Next, the influence of various
hydraulic parameters on the suspended concentration profile 
within the ice-covered channel is examined, both theoretically 
and visually. This is followed by a comparison between the
proposed solution and available experimental data, accompanied 
by a comprehensive analysis to evaluate its predictive accuracy
against the measurements. A sensitivity analysis of key sediment
transport parameters is then conducted to assess their impact
on model performance. Finally, the theoretical and practical 
significance of the present work is discussed. 

4.1 Validation of Semi-Analytical Solution 

Against FVM Solution 

This section presents the numerical validation of the semi-
analytical solution derived in Section 3.1 . The FVM solution,
discussed in Section 3.2 , is utilized as a benchmark. The
parameter values used are chosen from the work of Sayre and
Song [ 8 ], which are 𝐻 = 0 . 122m , 𝑛𝐼 = 0 . 0108 , 𝑛𝐵 = 0 . 0306 , Λ =
6 . 6 , 𝑠𝐵 = 0 . 00204 , 𝐷𝑚 = 0 . 25mm , 𝛾𝑠 = 26000N ∕m 

3 , 𝛾𝑤 = 

9800N ∕m 

3 , 𝜎 = 1 . 3 , 𝑎 = 0 . 0334 , and 𝑆𝑎 = 150mg ∕L . For
comparison purposes, Figure 3 shows the vertical concentration 
magnitudes at different times: 𝑇 = 0 . 5 , 1 , 1 . 5 , 2 , 3 , and 5 s .
According to Figure 3 , the semi-analytical solution derived
using the GITT shows an excellent match with the numerical
solution obtained using FVM. Furthermore, it can be observed
that the concentration magnitude decreases with increasing 
vertical height, eventually reaching zero at the ice cover. This
decline in concentration at the top is attributed to the type
of sediment diffusion coefficient used in the study, which
diminishes at the upper boundary. To quantify the accuracy of
the GITT solution, the 𝐿1 error and 𝐿2 error in the semi-analytical
solutions for estimating the sediment concentration magnitude 
were calculated [ 53 ]. These errors are normalized with the total
sum of absolute values obtained from the numerical solution
using FVM and are given by 

𝐿1 =
∑𝑛𝑐 𝑒 𝑙𝑙 

𝑖= 1 |𝑆𝐹 𝑉 𝑀 ,𝑖 − 𝑆𝐺 𝐼 𝑇 𝑇 ,𝑖 |∑𝑛𝑐 𝑒 𝑙𝑙 

𝑖= 1 𝑆𝐹 𝑉 𝑀 ,𝑖 

, 

and 

𝐿2 =

√ ∑𝑛𝑐 𝑒 𝑙𝑙 

𝑖= 1 ( 𝑆𝐹 𝑉 𝑀 ,𝑖 − 𝑆𝐺 𝐼 𝑇 𝑇 ,𝑖 ) 
2 ∑𝑛𝑐 𝑒 𝑙𝑙 

𝑖= 1 𝑆𝐹 𝑉 𝑀 ,𝑖 

. 

The calculated 𝐿1 error and 𝐿2 error at different times—𝑇 =
0 . 5 s, 𝑇 = 1 s, 𝑇 = 1 . 5 s, 𝑇 = 2 s, 𝑇 = 3 s, and 𝑇 = 5 s—
are tabulated in Table 1 .This quantification demonstrates the
accuracy of the GITT solution relative to the FVM solutions.
The low error values indicate that the GITT accurately predicts
the results obtained from the FVM. It is pertinent to mention
that the agreement between the semi-analytical GITT solution
and the numerical FVM solution demonstrates the internal 
consistency of the present methodology. This comparison alone 
does not constitute independent validation, as both methods
7 of 23
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FIGURE 2 Schematic representation of the cell arrangement in an 1D geometry. 
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FIGURE 3 Comparison of solutions based on GITT and FVM at 
different time steps. 

 

 

 

 

 

 

 

 

 

 

TABLE 1 Error table comparing GITT solution with FVM solution. 

Error quantification 

Time 𝑳𝟏 𝑳𝟐 

0.5 s 0.009174 0.001105 
1 s 0.010248 0.001075 
1.5 s 0.010439 0.001089 
2 s 0.010281 0.001097 
3 s 0.008971 0.001015 
5 s 0.006728 0.000787 
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solve the same governing equations. However, the GITT solution
has also been compared against experimental measurements
(Section 4.3 ), providing independent validation of the model and
confirming that it captures the physical behavior of the system
with a satisfactory level of accuracy. 

Additionally, to assess the numerical robustness and grid inde-
pendence of the FVM solution, a systematic grid convergence
test was performed. The model was solved for four progressively
refined grids with 𝑛cell = 10 , 20 , 50 , and 100 . The concentration
profiles at 𝑇 = 5 s , obtained from successive grid refinements,
were interpolated onto a common reference grid, and the relative
𝐿2 error norm was computed as:

𝐸𝐹 𝑉 𝑀 

𝐿2 
=

√ √ √ √ √ √ 

∑𝑁𝐹 𝑉 𝑀 
𝑖𝑝 

𝑖= 1 
(
𝑆𝑓 𝑖 𝑛𝑒,𝑖 − 𝑆𝑐 𝑜 𝑎 𝑟 𝑠 𝑒 ,𝑖 

)2 
∑𝑁𝐹 𝑉 𝑀 

𝑖𝑝 

𝑖= 1 
(
𝑆𝑓 𝑖 𝑛𝑒,𝑖 

)2 , 
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where 𝑆𝑓 𝑖 𝑛𝑒,𝑖 and 𝑆𝑐 𝑜 𝑎 𝑟 𝑠 𝑒 ,𝑖 denote the solutions on the fine and
coarse grids, respectively, and 𝑁𝐹 𝑉 𝑀 

𝑖𝑝 
is the number of interpo-

lated points. 

The obtained relative errors were 1 . 92 × 10− 2 , 9 . 52 × 10− 3 , and
3 . 62 × 10− 3 for the grid pairs (10 , 20) , (20 , 50) , and (50 , 100) ,
respectively. The consistent and monotonic reduction in error
with grid refinement clearly demonstrates numerical conver- 
gence. At 𝑛cell = 100 , the error becomes negligible, indicating that
the solution is grid-independent and numerically stable. 

Similarly, the concentration profiles at 𝑇 = 5 s were computed
for different truncation numbers 𝑁 = 5 , 10 , 15 , 30 in the GITT
solution. The profiles were interpolated onto a common reference
grid, and the relative 𝐿2 error between successive truncation
numbers was calculated as: 

𝐸𝐺 𝐼 𝑇𝑇 𝐿2 
=

√ ∑𝑁𝐺 𝐼 𝑇𝑇 
𝑖𝑝 

𝑖= 1 

(
𝑆
( 𝑛+ 1) 
𝑖 

− 𝑆
( 𝑛) 

𝑖 

)2 
√ ∑𝑁𝐺 𝐼 𝑇𝑇 

𝑖𝑝 

𝑖= 1 

(
𝑆
( 𝑛+ 1) 
𝑖 

)2 , 

where 𝑆( 𝑛) 
𝑖 

and 𝑆( 𝑛+ 1) 
𝑖 

represent the concentration at the 𝑖-th grid
point for two successive truncation numbers 𝑁( 𝑛) and 𝑁( 𝑛+ 1) . 

The computed relative errors are 1 . 316 × 10− 3 for 𝑁 = 5 vs. 10 ,
2 . 307 × 10− 3 for 𝑁 = 10 vs. 15 , and 7 . 730 × 10− 4 for 𝑁 = 15 vs. 30 .
International Journal for Numerical and Analytical Methods in Geomechanics, 2025
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FIGURE 4 Influence of 𝜎 on vertical concentration profiles at 
various time points: (a) 𝑇 = 1 s and (b) 𝑇 = 5 s. 
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These results indicate that the solution is essentially converged
for 𝑁 ≥ 15 , confirming the robustness and reliability of the GITT
solution with respect to truncation order. 

4.2 Influence of Different Hydraulic Parameters 
and Physical Interpretation 

In this section, we investigate the influence of various hydraulic
parameters on the temporal evolution of suspended sediment
concentration profiles. This analysis involves calculating con-
centration magnitudes using Equations ( 27 )–( 30 ) and employing
the GITT solution methodology. We then assess how differ-
ent hydraulic components affect our model and explore how
predicted characteristics of concentration profiles can help ratio-
nalize the phenomenon of suspended sediment transport in
turbulent flow within an ice channel, as observed in reality.
The hydraulic components that play a significant role in the
mathematical modeling discussed in Section 2 are the ratio of
shear velocities at the lower bed layer and upper ice layer, 𝜆;
the correction coefficient in settling velocity, 𝜎; the inverse of
the turbulent Schmidt number, Λ; and the particle diameter,
𝐷𝑚 . To quantify the impacts of these individual components, we
systematically vary the value of each parameter while keeping
the others constant. To facilitate this context, we randomly select
an experimental run from Section 4.3 to obtain the values of all
parameters necessary for computing concentration profiles from
Equations ( 27 )–( 30 ). 

The effect of the dimensionless correction coefficient, 𝜎, on
the present model is illustrated in Figures 4 and 5 . Figure 4
depicts the vertical concentration profiles at time intervals of
𝑇 = 1 s and 𝑇 = 5 s for six distinct values of 𝜎: 1, 2, 8, 12, 16, and
20. Meanwhile, Figure 5 displays the concentration contours
in the 𝑇 𝑦 -plane for three different values of 𝜎: 1, 8, and 20.
For both figures, the parameters are set to 𝐻 = 0 . 122m , 𝑛𝐼 =
0 . 0108 , 𝑛𝐵 = 0 . 0306 , Λ = 6 . 6 , 𝑠𝐵 = 0 . 00204 , 𝐷𝑚 = 0 . 25mm , 𝛾𝑠 = 

26000N ∕m 

3 , 𝛾𝑤 = 9800N ∕m 

3 , 𝑎 = 0 . 0334 , 𝑆𝑎 = 150mg ∕L . 
From Figures 4 and 5 , it can be observed that as 𝜎 increases, the
magnitude of the vertical concentration profile also increases at
a given time. As time progresses, the differences in magnitude
between profiles for different 𝜎 values become more pronounced.
Initially, the ice channel is free of sediment, and sediment is
introduced into the suspension region only from the channel bed.
As time passes, more sediment particles become suspended in the
region due to turbulent diffusion, leading to an overall increase
in concentration magnitude and an amplified difference between
the concentration magnitudes for different 𝜎 values. Additionally,
Figure 4 indicates that when 𝜎 values are close to each other, such
as 𝜎 = 1 and 𝜎 = 2 , the difference in concentration magnitudes
is smaller compared to profiles for 𝜎 values that are further apart,
such as 𝜎 = 8 and 𝜎 = 20 . Upon examining Equation ( 4 ), it is
evident that as 𝜎 increases, the value of the downward settling
velocity 𝜔 decreases. This means the rate at which suspended
sediment particles settle towards the bed decreases, allowing
more sediment particles to accumulate in the suspension region.
Consequently, the vertical concentration profile increases. A
detailed observation of Figure 5a–c reveals that, as the value of 𝜎
increases, the contour lines gradually shift upward. Specifically,
as 𝜎 increases from 1 to 20, the vertical position of contour
lines corresponding to the same concentration values shows a
International Journal for Numerical and Analytical Methods in Geomechanics, 2025
small upward shift. For instance, at 𝑇 = 5 , in Figure 5a ( 𝜎 = 1 ),
the contour line for a concentration value of 0.09 is located at
𝑦 = 0 . 7006931 , and the contour line for a concentration value
of 0.90 is at 𝑦 = 0 . 047177 . In Figure 5b (𝜎 = 8 ) , these vertical
positions shift to 𝑦 = 0 . 735052 and 𝑦 = 0 . 0518841 , respectively. 
Similarly, in Figure 5c ( 𝜎 = 20) , the positions shift further upward
to 𝑦 = 0 . 77763 and 𝑦 = 0 . 05965 , respectively. This upward shift is 
attributed to the increase in the overall concentration magnitude
within the suspension region. Physically, the parameter 𝜎 serves 
as a correction coefficient that modulates the effective settling
velocity by accounting for boundary-induced resistance from 

both the ice cover and the channel bed. A higher 𝜎 value reduces
the influence of gravitational settling, thereby extending the 
suspension lifetime of sediment particles. This behavior reflects 
the complex interplay between the modified local hydrodynamic 
resistance and sediment–boundary interactions under confined 
ice-covered conditions. Thus, 𝜎 not only adjusts the settling 
dynamics but also indirectly governs the vertical distribution of
sediment concentration through its coupling with the boundary 
geometry and turbulence structure. 

Figures 6 and 7 illustrate the impact of the inverse of the Schmidt
number, denoted as Λ, on the concentration distribution within
turbulent flow in an ice channel. Specifically, in Figure 6 ,
the concentration profiles are examined vertically for various 
values of Λ at two distinct time steps, namely 𝑇 = 1 s and
𝑇 = 5 s. The parameters utilized here are 𝐻 = 0 . 122m , 𝑛𝐼 =
9 of 23
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FIGURE 5 Influence of 𝜎 on concentration contours in 𝑇𝑦 − plane . 
Here, (a), (b), and (c) correspond to 𝜎 = 1 , 8, and 20, respectively. 
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FIGURE 6 Influence of Λ on vertical concentration profiles at 
various time points: (a) 𝑇 = 1 s and (b) 𝑇 = 5 s. 
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0 . 0108 , 𝑛𝐵 = 0 . 0306 , 𝜎 = 1 . 3 , 𝑠𝐵 = 0 . 00204 , 𝐷𝑚 = 0 . 25mm , 𝛾𝑠 = 

26000N ∕m 

3 , 𝛾𝑤 = 9800N ∕m 

3 , 𝑎 = 0 . 0334 , 𝑆𝑎 = 150mg ∕L . This
analysis reveals that as Λ increases, the concentration magnitude
also rises at any given time. This phenomenon stems from the
heightened dimensionless proportionality constant Λ, resulting
in an increased turbulent diffusion coefficient. Consequently,
when the turbulent diffusion coefficient, particularly with a
relatively large Λ, surpasses the gravitational effect significantly,
more sediment particles become readily suspended within the
water column. In essence, fluid elements exhibit greater mixing
across concentration gradients, thereby enhancing mass transfer
rates. With increasing Λ, the capacity of turbulence to mix
and transport sediment particles amplifies. This augmented
mixing leads to elevated sediment concentration within the
suspension region, as sediment particles are more effectively
kept in suspension rather than settling out. Consequently, the
vertical concentration distribution escalates at a specific time
𝑇 with the rising Λ. It is noteworthy that for very small values
of Λ, such as 1, the concentration magnitudes are notably
10 of 23
lower compared to larger Λ values, such as Λ = 8 , 10, and 12.
Physically, Λ, being the inverse of the turbulent Schmidt number,
quantifies how effectively turbulence transports sediment 
relative to viscous momentum diffusion. Rather than simply 
increasing vertical diffusion, higher Λ enhances the penetration 
of turbulent eddies into boundary layers near the bed and the
ice cover, promoting sediment entrainment from the bed and
facilitating redistribution in upper layers. This parameter thus
governs the balance between turbulence-driven mixing and 
gravitational settling, influencing not just the magnitude but also
the vertical structure of the concentration profile. Lower Λ values
correspond to weaker turbulence relative to sediment settling, 
limiting vertical mixing and reducing suspension efficiency. 

Figures 8 and 9 how the hydraulic parameter 𝜆 influences
the temporal evolution of sediment concentration across six 
different values: 𝜆 = 0 . 9 , 1 . 1 , 1 . 3 , 1 . 5 , 1 . 7 , and 1.9. With fixed
parameters 𝐻 = 0 . 122m , 𝜎 = 1 . 3 , Λ = 6 . 6 , 𝑠𝐵 = 0 . 00204 , 𝐷𝑚 =
0 . 25mm , 𝛾𝑠 = 26000N ∕m 

3 , 𝛾𝑤 = 9800N ∕m 

3 , 𝑎 = 0 . 0334 , 𝑆𝑎 = 

150mg ∕L , Figure 8 illustrates that, for a constant time interval,
the vertical concentration distribution declines as 𝜆 increases. 
Equation ( 22 ) reveals that 𝜆 correlates with the roughness of both
the ice cover and channel bed. A rise in 𝜆 implies rougher ice
cover or a smoother channel bed, leading to decreased sediment
suspension and consequent concentration diminishment. 
Notably, the decline in suspended concentration accelerates 
with higher 𝜆 values as time progresses, aligning with findings
International Journal for Numerical and Analytical Methods in Geomechanics, 2025
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FIGURE 7 Influence of Λ on concentration contours in 𝑇𝑦 − plane . 
Here, (a), (b), and (c) correspond to Λ = 1 , 5, and 12, respectively. 
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FIGURE 8 Influence of 𝜆 on vertical concentration profiles at 
various time points: (a) 𝑇 = 1 s and (b) 𝑇 = 5 s. 
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by Sahu et al. [ 32 ]. Physically, 𝜆, defined as the ratio of shear
velocities between the upper ice layer and the lower bed layer,
controls the vertical distribution of turbulence within the flow.
Higher 𝜆 values enhance shear and turbulent intensity in
the upper layer while diminishing turbulence near the bed,
altering sediment transport pathways. This results in reduced
entrainment of particles from the bed and a shift of mixing
toward the upper water column. Lower 𝜆 values, in contrast,
concentrate turbulence near the bed, favoring stronger sediment
lifting and redistribution in the lower portion of the flow. 

Additionally, the impact of another crucial characteristic
parameter, particle diameter 𝐷𝑚 , on concentration distribution
at a specific time 𝑇 = 5 s, has been examined. Figure 10
showcases vertical concentration profiles of suspended
sediment particles for five distinct particle diameters:
𝐷𝑚 = 0 . 10 , 0 . 12 , 0 . 15 , 0 . 20 , and 0 . 25mm , at 𝑇 = 5 s , with
𝐻 = 0 . 122 m , 𝑛𝐼 = 0 . 0108 , 𝑛𝐵 = 0 . 0306 , Λ = 6 . 6 , 𝜎 = 1 . 3 , 𝑠𝐵 = 
International Journal for Numerical and Analytical Methods in Geomechanics, 2025
0 . 00204 , 𝛾𝑠 = 26000N ∕m 

3 , 𝛾𝑤 = 9800N ∕m 

3 , 𝑎 = 0 . 0334 , and
𝑆𝑎 = 150mg ∕L . It is evident that concentration magnitude 
rises as 𝐷𝑚 decreases. Smaller particles, with reduced size 
and weight, are more prone to entraining in the suspension
region, hence increasing concentration. Physically, 𝐷𝑚 acts as 
a key control parameter governing the competition between 
inertial settling and turbulent entrainment. Larger particles 
possess greater inertia, making them less responsive to turbulent
eddies, whereas finer particles remain dynamically coupled with 
turbulent fluctuations. This contrast dictates how effectively 
sediments interact with the turbulent structures generated near 
the bed and beneath the ice cover. Consequently, variations in
𝐷𝑚 not only influence overall concentration but also modify the
thickness and structure of the suspension layer by altering the
efficiency of vertical mixing and sediment exchange between 
near-bed and upper flow regions. 

A comparison among Figures 4, 6 , and 8 reveals that, for a
given particle diameter 𝐷𝑚 and time 𝑇, sediment diffusion effects
supersede boundary roughness and settling velocity effects. 

4.3 Comparison With Experimental Dataset 

As far as the author is aware, there is no experimental data in the
literature related to the transport of suspended sediment within
an ice channel under an unsteady one-dimensional framework. 
11 of 23
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FIGURE 9 Influence of 𝜆 on concentration contours in 𝑇𝑦 − plane . 
Here, (a), (b), and (c) correspond to 𝜆 = 0 . 9 , 1.3, and 1.7, respectively. 
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FIGURE 10 Influence of 𝐷𝑚 on vertical concentration profiles at a 
particular time. 
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Consequently, direct comparison of the present semi-analytical 
solution with experimental data is deemed unfeasible. However, 
available experimental literature does exist on sediment transport
in ice channels under steady-state conditions. In this context,
the proposed semi-analytical solution is compared to the existing
experimental data, particularly over extended time periods after 
reaching a steady state. To achieve this, experimental data from
Sayre and Song [ 8 ], Lau and Krishnappan [ 25 ], and Muste et al.
[ 7 ] are taken into account. A brief summary of these experimental
studies is provided herein for thoroughness and convenience. 

In their research conducted in 1979, Sayre and Song [ 8 ] investi-
gated sediment movement in a closed-loop flume equipped with
a bed of sand, transparent glass walls, and an artificial ice layer
simulation. The measurement portion spanned 27.4 m in length,
0.45 m in depth, and 0.914 m in width, with the flume slope
adjustable without disrupting its operation. The bed comprised 
quartz foundry sand, possessing a geometric standard deviation 
of 1.41 and a median diameter of 0.25 mm. The study incorporated
two types of simulated ice cover: smooth and rough. For the
smooth ice cover, painted plywood panels were employed. These
panels, interconnected with hinges, formed a flexible surface 
spanning almost the entire flume length. Each panel, measuring
1.22 m in length, 1.27 cm in thickness, and 0.91 m in width, aimed
to closely replicate the conditions of natural ice cover. For the
simulation of a rough ice cover, continuous masonite strips, with
measurements of 0.64 cm in thickness and 2.54 cm in width, were
secured beneath the panels at intervals spaced 15.24 cm apart. 

Lau and Krishnappan [ 25 ] performed experiments in a rectan-
gular flume measuring 57.3 m in length, 0.756 m in width, and
0.29 m in depth. The flume slope was adjustable through motor-
driven screw jacks, while flow depth was regulated by louvered
gates positioned at the downstream end. Flex-O-Lite BT10 glass
beads, with a mean diameter of 0.15 mm and a specific gravity
of 2.50, constituted the bed material. A 6 cm layer of these
beads was evenly spread in the flume before each experiment,
leveled using a screed mounted on an instrument carriage. For
simulating the ice cover, 1.9 cm thick plywood with plastic
laminate attached underneath was utilized, ensuring a smooth
surface. These plywood panels, measuring 2.44 m in length and
0.75 m in width, were joined to form a continuous floating cover
across most of the flume length. Flow depth was monitored using
three-point gauges: one at each end of the test section and one
mounted on an instrument carriage. 

Muste et al. [ 7 ] conducted experiments utilizing a sediment-
recirculating flume with dimensions of 30 m in length, 0.91 m
in width, and 0.45 m in depth. This flume featured glass-sided
walls to enable visual observation and the application of laser-
based techniques. The flow rate measurement uncertainty was 
determined to be 5 × 10− 5 m 

3 , while the slope setting resolution
was approximately 5 × 10− 4 . To simulate ice covers, free-floating
plywood panels measuring 1.22 m in length, 0.9 m in width, and 13
mm in thickness were utilized. Considering the relatively limited
length of the simulated channel, it was deemed appropriate to
treat the covers as rigid. For the smooth cover condition, the
bottom surface of the panels was painted, while for the rough
cover condition, rectangular wooden strips measuring 12.5 mm 

in width, 8.5 mm in height, and 0.9 m in length were affixed to
the underside surface of the panels at intervals of 50.8 mm. The
International Journal for Numerical and Analytical Methods in Geomechanics, 2025
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FIGURE 11 Comparison of vertical concentration profiles obtained from the GITT solution with experimental data from Sayre and Song [ 8 ] for 
various runs: (a) RUN-AR, (b) RUN-AS, (c) RUN-BR, and (d) RUN-BS. 

TABLE 2 Summary of experimental data and parameter values. 

toprule Reference RUN 𝑯 (m) 𝒏𝑰 𝒏𝑩 𝒔𝑩 𝑫𝒎 

(mm) 𝜸𝒔 (N ∕m 

𝟑 ) 𝜸𝒘 (N ∕m 

𝟑 ) 𝚯

Sayre and Song [ 8 ] AR 0.121 0.0249 0.0228 0.0018 0.25 26000 9800 [10 , 2] 

AS 0.118 0.0114 0.0294 0.0018 0.25 26000 9800 [24 , 1] 

BR 0.148 0.0322 0.0236 0.00211 0.25 26000 9800 [4 . 2 , 1 . 5] 

BS 0.122 0.0108 0.0306 0.00204 0.25 26000 9800 [7 . 7 , 1] 

Lau and Krishnappan [ 25 ] 4C 0.0877 0.009 0.0225 0.001 0.15 24500 9800 [1 . 7 , 0 . 8] 

5C 0.0976 0.009 0.0225 0.001 0.15 24500 9800 [1 . 4 , 1 . 4] 

7C 0.116 0.009 0.0225 0.001 0.15 24500 9800 [1 . 7 , 2] 

Muste et al. [ 7 ] SC 0.122 0.009 0.0225 0.00015 0.25 25900 9800 [8 . 8 , 1 . 3] 
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sediment bed consisted of a uniform fine sand with a median
diameter of 0.25 mm, a geometric standard deviation of 1.4 (size
range 0 . 075 − 0 . 45 mm), and a specific gravity of 2.64. 

Figure 11 illustrates the comparison between the computed
concentration profiles and the experimental data from Sayre and
Song [ 8 ]. Figure 12a–c compare the computed concentrations
with the experimental data of Lau and Krishnappan [ 25 ], while
Figure 12d shows the comparison with the experimental data
of Muste et al. [ 7 ]. Here, in all the figures, the dimensionless
sediment concentration 𝑆∕𝑆𝑎 has been plotted against the vertical
depth, with the reference height taking the same value as that
of Wang et al. [ 29 ]. Table 2 provides details of the flow and
International Journal for Numerical and Analytical Methods in Geomechanics, 2025

 

sediment characteristics for all the runs within each experimental
setup. The model parameters Θ = [Λ, 𝜎] are estimated by initially
minimizing the objective function using the MATLAB function 
ga , which implements the genetic algorithm. Subsequently, the
obtained model parameters are utilized as initial guesses for refin-
ing the final set of model parameters using the MATLAB function
fmincon , which implements the interior-point algorithm. 

min 
Θ

𝑛𝑑 𝑎 𝑡𝑎 ∑
𝑖= 1 

[ 
𝑆𝑒 𝑥𝑝 ,𝑖 − 𝑆𝐺 𝐼 𝑇 𝑇 ,𝑖 

𝑆𝑒 𝑥𝑝 ,𝑖 

] 2 
. (52) 

Here, 𝑛data refers to the number of experimental data points
for concentration in a particular RUN of the corresponding
13 of 23
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FIGURE 12 Comparison of vertical concentration profiles obtained from the GITT solution with experimental data from Lau and Krishnappan 
[ 25 ] and Muste et al. [ 7 ] for various runs: (a) RUN-4C, (b) RUN-5C, (c) RUN-7C, and (d) RUN-SC. 

TABLE 3 Details of the hybrid parameter optimization used in the present study (RUN SC). 

Algorithm Parameter/Setting Value/Description 

Genetic algorithm ( ga ) Population size 50 
Number of generations 5 
Parameter bounds Λ ∶ [1 , 10] , 𝜎 ∶ [1 , 2] 
Objective function Equation ( 52 ), based on experimental vs. simulated concentrations 

Output Optimized parameters for fmincon initial guess 
Interior-point algorithm ( fmincon ) Initial guess ga -optimized parameters 

Parameter bounds Λ ∶ [1 , 10] , 𝜎 ∶ [1 , 2] 
Objective function Equation ( 52 ), same as ga 

Convergence criterion Default MATLAB interior-point tolerances 
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experiment. The finalized values of the optimized parameters Θ
can be found in Table 2 . Additionally, the algorithmic settings
and parameter values used in the ga and fmincon optimization
procedures are listed in Table 3 for Run SC. For all other runs, the
population size and number of generations remain the same as in
Run SC, except for the parameter bounds of Λ and 𝜎. The bounds
used for all runs are provided separately in Table 4 . 

The relationship between the model parameters Λ and 𝜎 and the
underlying physical conditions, such as water temperature, sed-
iment properties, and flow regime, is not yet fully characterized.
14 of 23
As a consequence, the calibrated values of these parameters are
dataset-specific and may differ across experimental setups or nat-
ural river conditions. The current model has been developed for
steady, uniform ice-covered channel flows, and its applicability to
unsteady or spatially varying flow conditions is limited. Further-
more, the calibration datasets correspond to water temperatures
and flow conditions higher than those typically observed in
natural ice-covered rivers. Under these circumstances, Λ and 
𝜎 function as effective calibration parameters that collectively 
account for unresolved physical processes, including sediment 
settling, turbulent diffusion, and mass transfer, under the specific
International Journal for Numerical and Analytical Methods in Geomechanics, 2025
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TABLE 4 Parameter bounds for Λ and 𝜎 used for the hybrid parametric optimization for all experimental runs. 

RUN AR AS BR BS 4C 5C 7C SC 

Bounds ( Λ, 𝜎) [9,10], [1,2] [24,30], [1,2] [1,30], [1,2] [1,30], [1,2] [1.65,1.7], [0.8,2] [1,5], [1,2] [1,1.7], [1,2] [1,10], [1,2] 
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laboratory conditions. Enhancing the generalizability of the
model requires additional experimental measurements under
conditions more representative of natural ice-covered rivers. Such
data would enable physically constrained calibration, allowing
the establishment of realistic parameter ranges for Λ and 𝜎 across
diverse flow and sediment regimes. While the present calibration
provides a reliable representation for the experimental dataset
considered, extending the model to field-scale applications will
necessitate further validation and potentially refinement of the
parameterization framework. 

In Figures 11 and 12 , the GITT solution of the present model
demonstrates satisfactory agreement with the experimental data
across all runs. However, in Figure 11 , near the ice cover, the
proposed GITT solution slightly overpredicts the concentration
for RUN AS and underpredicts it for RUN AR and BS. Similar
behavior has been observed in the studies by Wang et al. [ 29 ]
and Sahu et al. [ 32 ]. The optimized correction coefficient for
settling velocity, 𝜎, remains around 1.3, while the values for
the optimized inverse Schmidt number, Λ, range from 4.2 to
24 for all four runs by Sayre and Song [ 8 ]. In their research,
Sayre and Song [ 8 ] also observed unusually large values of Λ,
ranging from 1.9 to 25. They attributed these large values to
inaccurate measurements of suspended sediment involving small
quantities in the samples and to the possibility that the adopted
terminal velocity for the sediment particle median diameter was
significantly higher than the actual fall velocity of the suspended
sediment particles. Nevertheless, the relatively high values of
Λ observed here could be associated with the influence of the
turbulent diffusion coefficient in the flow field. In Figure 12 , the
GITT solution demonstrates a slight underestimation compared
to the measured data for RUNs 4C and 5C of Lau and Krishnappan
[ 25 ] in the upper ice layer. This discrepancy bears similarity to the
computed profiles for RUN AR and BS of Sayre and Song [ 8 ] in
Figure 11 . This likeness might be attributed to the presence of two
turbulent coherent vortices beneath the ice cover, which enhance
the suspended sediment concentration near the ice cover. In RUN
7C, an underestimation of the GITT solution is observed near
the vertical location of zero Reynolds shear stress. This arises
because the relatively high suspended sediment concentration
enhances particle interactions and collisions, promoting local
aggregation. Meanwhile, the near-zero Reynolds shear stress
implies minimal turbulent fluctuations, leading to negligible
interlayer exchange of particles. Consequently, the accumulated
sediments are not easily dispersed, and under the combined
effect of high SSC and weak turbulence, sediment accumulation
is intensified [ 31 ]. Furthermore, the optimized average value of
the turbulent Schmidt number Λ for RUN 4C, 5C, and 7C is
1.4, a value closely approximating that described in the study
of Lau and Krishnappan [ 25 ]. To evaluate the accuracy of the
GITT solution in predicting experimental data, we computed
the 𝐿1 𝑒𝑥𝑝 and 𝐿2 𝑒𝑥𝑝 , RMSE (root mean square error), NSE (Nash–
Sutcliffe eff iciency), and 𝑅2 (coeff icient of determination). The
mathematical expressions for those are as follows: 
International Journal for Numerical and Analytical Methods in Geomechanics, 2025

 

𝐿1 𝑒𝑥𝑝 =
∑𝑛𝑑 𝑎 𝑡𝑎 

𝑖= 1 |𝑆𝑒 𝑥𝑝 ,𝑖 − 𝑆𝐺 𝐼 𝑇 𝑇 ,𝑖 |∑𝑛𝑑 𝑎 𝑡𝑎 

𝑖= 1 𝑆𝑒 𝑥𝑝 ,𝑖 
, 

𝐿2 𝑒𝑥𝑝 =

√ ∑𝑛𝑑 𝑎 𝑡𝑎 

𝑖= 1 ( 𝑆𝑒 𝑥𝑝 ,𝑖 − 𝑆𝐺 𝐼 𝑇 𝑇 ,𝑖 ) 
2 ∑𝑛𝑑 𝑎 𝑡𝑎 

𝑖= 1 𝑆𝑒 𝑥𝑝 ,𝑖 
, 

RMSE =

√ √ √ √ 

1 

𝑛𝑑 𝑎 𝑡𝑎 

𝑛𝑑 𝑎 𝑡𝑎 ∑
𝑖= 1 
( 𝑆𝐺 𝐼 𝑇 𝑇 ,𝑖 − 𝑆𝑒 𝑥𝑝 ,𝑖 )2 , 

NSE = 1 −
∑𝑛𝑑 𝑎 𝑡𝑎 

𝑖= 1 ( 𝑆𝐺 𝐼 𝑇 𝑇 ,𝑖 − 𝑆𝑒 𝑥𝑝 ,𝑖 )
2 ∑𝑛𝑑 𝑎 𝑡𝑎 

𝑖= 1 ( 𝑆𝑒 𝑥𝑝 ,𝑖 − 𝑆𝑒𝑥𝑝 )2 
, 

and 

𝑅2 =

[∑𝑛𝑑 𝑎 𝑡𝑎 

𝑖= 1 ( 𝑆𝐺 𝐼 𝑇 𝑇 ,𝑖 − 𝑆𝐺 𝐼 𝑇𝑇 )( 𝑆𝑒 𝑥𝑝 ,𝑖 − 𝑆𝑒𝑥𝑝 )
]2 

∑𝑛𝑑 𝑎 𝑡𝑎 

𝑖= 1 ( 𝑆𝐺 𝐼 𝑇 𝑇 ,𝑖 − 𝑆𝐺 𝐼 𝑇𝑇 )2 
∑𝑛𝑑 𝑎 𝑡𝑎 

𝑖= 1 ( 𝑆𝑒 𝑥𝑝 ,𝑖 − 𝑆𝑒𝑥𝑝 )2 
. 

Here, 𝑆𝐺 𝐼 𝑇𝑇 and 𝑆𝑒𝑥𝑝 denote the standard means of the cor-
responding predicted and experimental values. In Table 5 , the
determined 𝐿1 𝑒𝑥𝑝 , 𝐿2 𝑒𝑥𝑝 , RMSE, NSE, and 𝑅2 values for all runs
are presented. Typically, these errors fall within an acceptable
range, but exceptions are noted for RUN 4C, 5C, and 7C. The
relatively higher errors mainly result from the underestimation
of suspended sediment concentration near the upper ice layer
and around the vertical position corresponding to zero Reynolds
shear stress. The study of Lau and Krishnappan [ 25 ] attributed
these underestimated outcomes to the suspension of finer bed
material fractions. 

4.4 Sensitivity Analysis of Different Parameters 

In this section, sensitivity analysis is conducted to quantitatively
assess the impact of the model parameters Θ = [Λ, 𝜎] on sediment
concentration magnitudes. This is achieved using variance-based 
sensitivity analysis (VBSA), commonly known as the Sobol’ 
method [ 54, 55 ], a form of global sensitivity analysis. VBSA is
a robust tool for understanding and quantifying the influence
of input parameters on model predictions. Operating within a
probabilistic framework, VBSA breaks down the output variance 
into contributions from individual inputs and their interactions. 

To apply VBSA in this study, the output of interest is the depth-
averaged concentration, 𝑆 , with the transport parameters Θ = 

[Λ, 𝜎] serving as the model inputs. Thus, the VBSA model can be 
represented as: 

𝑆 = 𝑔𝑉𝐵𝑆𝐴 (Θ) . (53) 

The function 𝑔𝑉𝐵𝑆𝐴 (Θ) is decomposed into component functions
that account for the effects of individual input parameters
and their interactions. This decomposition follows the Sobol 
15 of 23
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TABLE 5 Error table comparing GITT solution with experimental data. 

Error quantification 

Reference RUN 𝑳𝟏 𝒆𝒙𝒑 𝑳𝟐 𝒆𝒙𝒑 RMSE NSE 𝑹𝟐 

Sayre and Song [ 8 ] AR 0.071703 0.043042 0.031678 0.955716 0.972732 
AS 0.049317 0.025903 0.031388 0.983572 0.989970 
BR 0.178130 0.135707 0.068219 0.896251 0.952977 
BS 0.062084 0.030254 0.025291 0.979309 0.991704 

Lau and Krishnappan [ 25 ] 4C 0.615367 0.330170 0.097802 0.120425 0.882675 
5C 0.326066 0.131950 0.049101 0.842534 0.970628 
7C 0.283874 0.128528 0.049641 0.879740 0.961066 

Muste et al. [ 7 ] SC 0.126189 0.078635 0.022826 0.963621 0.992939 
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expansion approach [ 54–56 ]: 

𝑆 = 𝑔𝑉𝐵𝑆𝐴 0 +
2 ∑
𝑖= 1 
𝑔𝑉𝐵𝑆𝐴 
𝑖 

(Θ𝑖 ) +
2 ∑

1 ≤ 𝑖 < 𝑗 ≤ 2 
𝑔𝑉𝐵𝑆𝐴 
𝑖𝑗 

(Θ𝑖 , Θ𝑗 ) . (54)

Here, 𝑔𝑉𝐵𝑆𝐴 0 denotes the mean response of 𝑔𝑉𝐵𝑆𝐴 across the
input space. The first-order component function, 𝑔𝑉𝐵𝑆𝐴 

𝑖 
, reflects

the independent contribution of the parameter Θ𝑖 . Meanwhile,
the subcomponent function 𝑔𝑉𝐵𝑆𝐴 

𝑖𝑗 
captures the interaction effect

between the parameters Θ𝑖 and Θ𝑗 on 𝑔𝑉𝐵𝑆𝐴 . The vanishing con-
dition implies that the integral of a Sobol expansion component
function with respect to any of its variables is zero [ 56 ], i.e., 

∫ 𝑓𝑚 (Θ𝑚 ) 𝑔
𝑉𝐵𝑆𝐴 
𝑖𝑗 

(Θ𝑖 , Θ𝑗 ) 𝑑Θ𝑚 = 0 , for all 𝑚 ∈ { 𝑖 , 𝑗 } , (55)

where 𝑓𝑚 (Θ𝑚 ) denotes the probability density function (PDF of
the 𝑚𝑡 ℎ input parameter). Accordingly, the variance of the model,
𝑉𝑎 𝑟 (𝑆 ) , can be expressed as [ 55 ]: 

𝑉𝑎 𝑟 (𝑆 ) =
2 ∑
𝑖= 1 
𝑉𝑖 +

2 ∑
1 ≤ 𝑖 < 𝑗 ≤ 2 

𝑉𝑖,𝑗 , (56)

where 𝑉𝑖 represents the contribution of the input parameter Θ𝑖 to
the model output variance, and 𝑉𝑖𝑗 denotes the contribution from
the interactions between Θ𝑖 and Θ𝑗 . Their respective expressions
are given by 

𝑉𝑖 = 𝑉𝑎 𝑟 ( 𝑔𝑉𝐵𝑆𝐴 
𝑖 

(Θ𝑖 )) = 𝑉𝑎 𝑟 ( 𝐸[𝑆 |Θ𝑖 ]) , (57)

and 

𝑉𝑖,𝑗 = 𝑉𝑎 𝑟 ( 𝑔𝑉𝐵𝑆𝐴 
𝑖𝑗 

(Θ𝑖 , Θ𝑗 )) = 𝑉𝑎 𝑟 ( 𝐸[𝑆 |Θ𝑖 , Θ𝑗 ]) − 𝑉𝑖 − 𝑉𝑗 . (58)

The decomposition of sensitivity indices is subsequently achieved
by normalizing against the total variance as follows: 

2 ∑
𝑖 

𝑆𝑆𝑜 𝑏 𝑜 𝑙 
𝑖 

+
2 ∑

1 ≤ 𝑖 < 𝑗 ≤ 2 
𝑆𝑆𝑜 𝑏 𝑜 𝑙 
𝑖,𝑗 

= 1 . (59)

Here, 𝑆𝑆𝑜 𝑏 𝑜 𝑙 
𝑖 

and 𝑆𝑆𝑜 𝑏 𝑜 𝑙 
𝑖𝑗 

denote the first and second order Sobol
indices, with 

𝑆𝑆𝑜 𝑏 𝑜 𝑙 = 𝑉𝑖 ∕𝑉𝑎 𝑟 (𝑆 ) , (60)

𝑖 
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and 

𝑆𝑆𝑜 𝑏 𝑜 𝑙 
𝑖𝑗 

= 𝑉𝑖𝑗 ∕𝑉𝑎 𝑟 (𝑆 ) . (61) 

High values of 𝑆𝑆𝑜 𝑏 𝑜 𝑙 
𝑖 

signify that the corresponding parameters
have a significant impact on the output variance. In contrast,
𝑆𝑆𝑜 𝑏 𝑜 𝑙 
𝑖𝑗 

measures the effects of interaction terms between param- 
eters. The total sensitivity index, 𝑆𝑆𝑜 𝑏 𝑜 𝑙 𝑇𝑖 

, is defined as follows [ 5 5 ]:

𝑆𝑆𝑜 𝑏 𝑜 𝑙 𝑇𝑖 
= 𝑆𝑆𝑜 𝑏 𝑜 𝑙 

𝑖 
+

2 ∑
𝑗 

𝑆𝑆𝑜 𝑏 𝑜 𝑙 
𝑖𝑗 

= 1 −
𝑉𝑎 𝑟 ( 𝐸[𝑆 |Θ∼𝑖 ]) 

𝑉𝑎 𝑟 (𝑆 ) 
=
𝐸 [ 𝑉 𝑎 𝑟 (𝑆 |Θ∼𝑖 )] 

𝑉𝑎 𝑟 (𝑆 ) 
. (62) 

Here, Θ∼𝑖 represents the set of all components except Θ𝑖 . The
total sensitivity index, 𝑆𝑆𝑜 𝑏 𝑜 𝑙 𝑇𝑖 

, captur es both the main effect and all
interaction effects involving Θ𝑖 . A higher value of 𝑆𝑆𝑜 𝑏 𝑜 𝑙 𝑇𝑖 

indicates
that Θ𝑖 is influential, including through interactions. If there 
is a large difference between 𝑆𝑆𝑜 𝑏 𝑜 𝑙 𝑇𝑖 

and 𝑆𝑆𝑜 𝑏 𝑜 𝑙 
𝑖 

, it suggests that
significant interaction effects involving Θ𝑖 are present. 

In all the experimental runs described in Section 4.3 , the VBSA
was conducted, and the results are presented in Table 6 . From
Table 6 , it is evident that 𝑆𝑆𝑜 𝑏 𝑜 𝑙 Λ consistently shows significantly
higher values compared to 𝑆𝑆𝑜 𝑏 𝑜 𝑙 𝜎 . This indicates that Λ is generally
more influential than 𝜎 in predicting suspended sediment mag- 
nitudes in ice-covered channel flows. The VBSA also highlights
the importance of focusing on the values of Λ when modeling
suspended sediment transport in such conditions. It is worth
noting that there is limited experimental data available in the
literature for ice-covered turbulent channel flows, and additional 
experimental data is needed for a more thorough VBSA. This
VBSA represents a valuable step forward in understanding the
sensitivity of parameters in ice-covered flow models. 

4.5 Theoretical Significance of the Present 
Research 

To emphasize the significance of this research, it is crucial
to delineate how the proposed model advances beyond exist-
ing analytical and semi-analytical formulations for suspended 
International Journal for Numerical and Analytical Methods in Geomechanics, 2025
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TABLE 6 Summary of VBSA for the chosen experimental data. 

Reference RUN 𝑺𝑺𝒐𝒃𝒐𝒍 
𝚲

(%) 𝑺𝑺𝒐𝒃𝒐𝒍 𝝈 (%) 𝑺𝑺𝒐𝒃𝒐𝒍 
𝑻𝚲

− 𝑺𝑺𝒐𝒃𝒐𝒍 
𝚲

(%) 𝑺𝑺𝒐𝒃𝒐𝒍 
𝑻𝝈

− 𝑺𝑺𝒐𝒃𝒐𝒍 𝝈 (%) 

Sayre and Song [ 8 ] AR 5.34 0.55 94.11 94.12 
AS 5.12 0.04 94.84 94.85 
BR 13.95 0.03 86.03 86.01 
BS 8.92 0.02 91.06 91.06 

Lau and Krishnappan [ 25 ] 4C 9.51 0.01 90.48 90.49 
5C 13.78 0.01 86.21 86.20 
7C 9.45 0.02 90.53 90.53 

Muste et al. [ 7 ] SC 9.44 0.01 90.55 90.56 
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sediment concentration, particularly those developed for ice-
covered channel flows, while also addressing relevant studies
pertaining to open-channel flow conditions. The analytical
framework proposed by Wang et al. [ 29 ] predicts suspended
sediment concentration in ice-covered alluvial channels. This
model was grounded in a Rouse-like formulation. It also included
a sensitivity analysis of various hydraulic parameters on concen-
tration distribution. The fractional-derivative framework devel-
oped by Wang et al. [ 30 ] describes the dynamics of suspended
sediment concentration. This model captured the non-local
characteristics of vertical diffusion of suspended sediment par-
ticles in such channels. While both models analytically address
particle-turbulence interaction in suspension, they are limited
to steady-state conditions. The semi-analytical model proposed
by Sahu and Ghoshal [ 34 ] represents a steady, one-dimensional
coupled system of ODEs describing velocity and suspension
concentration in an ice-covered channel. These models do not
provide insights into the temporal evolution of concentration
profiles. Additionally, their sensitivity analysis methods lack
mathematical rigor. The two-dimensional analytical framework
developed by Sahu et al. [ 32 ] incorporates a time-dependent
term to characterize unsteady variations in suspended sediment
concentration under ice-covered channel conditions. The model
was solved numerically using a finite difference method. It
predicts temporal evolution but is constrained by numerical
approaches. It also lacks a rigorous procedure for optimizing
and evaluating parameter sensitivities. The unsteady fractional
advection–diffusion framework developed by Sahu et al. [ 33 ]
employs the fADE to represent memory-dependent sediment
transport processes. While capturing temporal dynamics, this
model also relies on numerical methods. The recent analytical
study by Sahu et al. [ 36 ] analyzes an unsteady, one-dimensional
time-fractional advection–diffusion equation using fractional
calculus, capturing memory-dependent particle transport in an
ice-covered channel, in contrast to the present classical analysis.
The study assumes depth-averaged, constant turbulent diffusion
coefficients and depth-averaged, constant settling velocity to
simplify the derivation of the analytical solution. These studies
by Sahu et al. [ 33 ] and Sahu et al. [ 36 ] also do not incorporate a
rigorous sensitivity analysis framework. 

While Zhang et al. [ 46 ] applied PINNs to solve the 1DV sus-
pended sediment settling-diffusion equation, and Zhang et al.
[ 20 ] derived an analytical solution for unsteady, non-conservative
conditions, neither study incorporates ice-cover dynamics. They
International Journal for Numerical and Analytical Methods in Geomechanics, 2025
assume constant vertical profiles for turbulent diffusivity and set-
tling velocity. This assumption is appropriate for wave-dominated 
shallow environments. In such environments, turbulence from 

wind, wave breaking, and bottom friction mixes throughout the
water column. As a result, the eddy diffusivity can be considered
nearly uniform [ 20, 57 ]. Both studies have proven highly effective
in the context of sediment transport modeling. 

Although several recent analytical and semi-analytical studies 
have addressed suspended sediment transport under nonequi- 
librium conditions, the majority do not account for ice-covered
flow dynamics. In some of these studies on open-channel flows,
the turbulent diffusion coefficient in the advection–diffusion 
equation is assumed constant throughout the vertical depth. This
assumption simplifies the mathematical formulation. Depending 
on the physical focus of the study, it may also adequately represent
the intended flow conditions. As a result, the analytical or semi-
analytical solution becomes more tractable. In other analytical 
and semi-analytical studies of suspended sediment concentration 
in open-channel flows, depth-dependent turbulent diffusivity 
and settling velocity have been incorporated to more accurately
capture the vertical variation of sediment transport. For ice-
covered flows, analytical/semi-analytical solutions for suspended 
sediment concentration are typically limited to steady-state cases 
[ 29, 30, 34 ], while some unsteady analytical models assume
constant turbulent diffusion coefficients and settling velocities 
[ 36 ]. Some numerical approaches [ 32 ] account for the vertical
variation of these parameters. The present GITT solution effec-
tively accounts for both the turbulent diffusion coefficient and the
sediment settling velocity as functions of the vertical coordinate.
This capability arises from the relative ease of constructing
integral transform pairs and performing forward and inverse 
transforms for analytical or semi-analytical manipulation of the 
present governing equations. Additionally, the present GITT 
solution remains applicable even when these parameters are 
treated as constant, providing a more generalized semi-analytical 
strategy for predicting suspended sediment concentration in 
ice-covered flows. However, for highly nonlinear equations or 
irregular boundary conditions, identifying suitable closed-form 

transform pairs can be challenging, which may limit the direct
applicability of the method in such cases. 

In practice, parameter selection is critical for modeling ice-
covered channel flows, and accurate quantification of parameter 
sensitivity is essential for reliable predictions of suspended
17 of 23
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sediment concentration. Existing models for sediment sus-
pension in ice-covered channels, whether analytical, semi-
analytical, or numerical, generally do not address parameter
selection through a rigorous mathematical procedure. Addition-
ally, numerical methods are inherently prone to errors, which,
when combined with non-rigorous sensitivity analyses, can com-
promise the validity of physical models. The present study over-
comes these limitations by integrating the present GITT frame-
work with parameter optimization and variance-based sensitivity
analysis. Parameters were optimized using a mathematically pre-
cise approach. This approach combined genetic algorithms with
the interior point algorithm. A robust sensitivity analysis was
conducted using Sobol’s variance-based method. This method
provided detailed quantification of sensitivity indices. 

The present semi-analytical GITT framework further distin-
guishes itself from purely data-driven approaches by explicitly
incorporating key physical processes, such as turbulence-induced
vertical variations in diffusion and settling velocity. This allows
the method to produce reliable predictions even when experi-
mental or field data are limited, while also enabling systematic
sensitivity analysis and parametric studies. 

By integrating parameter optimization and variance-based sen-
sitivity analysis within the GITT framework, the present solution
not only serves as a benchmark for validating numerical and data-
driven models but also provides deeper insight into the dominant
physical mechanisms governing suspended sediment transport in
ice-covered channel flows. 

4.6 Practical Significance of the Present 
Research 

The semi-analytical GITT solution presented here provides
accurate, time-dependent vertical profiles of suspended sedi-
ment in ice-covered channels, supporting hydraulic engineering
and environmental management. It can enable prediction of
suspended load and, consequently, help understand sediment
accumulation and scouring near ice-covered beds, informing the
design and maintenance of hydraulic structures such as bridges
and intakes. Sensitivity analysis of parameters, including settling
velocity and turbulent Schmidt number, allows assessment of
sediment transport under varying ice and flow conditions and
can facilitate adaptive strategies in climate-affected regions. The
methodology may also be extended to contaminants or microplas-
tics, supporting water quality management. Additionally, the
semi-analytical solution serves as a benchmark for testing and
validating numerical sediment transport models in ice-covered
channels, ensuring that large-scale hydraulic simulations used
for infrastructure design or environmental assessments remain
robust and reliable. 

5 Conclusions 

This study presents a semi-analytical solution based on GITT to
predict suspended particle concentration profiles in ice-covered
turbulent channel flows under unsteady conditions. The model
incorporates a comprehensive turbulent diffusion coefficient and
settling velocity. It accounts for both channel bed and ice surface
18 of 23
roughness. Validation is performed against experimental data and 
numerical methods. The results demonstrate high accuracy. This
provides a valuable tool for sediment transport analysis in such
environments. The key findings of this study are summarized as
follows: 

∙ As the correction coefficient in settling velocity ( 𝜎) increases,
the magnitude of the vertical concentration profile also 
increases at a given time. Over time, the differences in the
magnitude of profiles corresponding to various 𝜎 values 
become more pronounced. 

∙ The vertical concentration distribution at a specific time ( 𝑇)
increases with the rising inverse of the Schmidt number ( Λ).
For very small values of Λ, the concentration magnitudes are
significantly lower compared to larger Λ values. 

∙ An increase in the roughness of ice cover or the smoothness
of the channel bed results in reduced sediment suspension
and a consequent decline in concentration. This reduction 
in suspended concentration becomes more pronounced with 
higher 𝜆 values as time progresses. 

∙ An optimal set of model parameters, including the turbulent
Schmidt number and the settling velocity correction coeffi- 
cient, has been identified for several experimental datasets. 
Statistical indices such as 𝐿1 , 𝐿2 , RMSE, NSE, and 𝑅2 indicate
that the errors quantified with these optimized parameters
fall within an acceptable range when comparing the GITT
solution to experimental data. 

∙ The VBSA highlights the inverse of the turbulent Schmidt
number as the most sensitive parameter in predicting con-
centration profiles in ice-covered channels. This sensitivity is 
quantified using various Sobol indices. 

∙ The derived GITT solution serves as a benchmark for vali-
dating numerical solutions in the context of sediment-laden, 
ice-covered channel flows. 

In the future, one may include parameters such as unsteady
velocity profiles. Non-uniform streamwise sediment concentra- 
tions can also be added to the current model. These additions
would enhance the efficacy of concentration prediction in an
ice-covered channel. Although this study primarily addresses 
suspended sediment particles, the methodology is not limited 
to this particulate matter. The proposed semi-analytical solution
utilizing GITT holds broader potential. It can be extended to
model the concentration of various suspended substances within 
the ice-covered channel. This includes contaminants released 
from the upper ice layer. It also applies to the transport parameters
of microplastics. 

A key limitation of the present study is the lack of direct
unsteady experimental data under ice-covered flow conditions. 
Consequently, the model validation was restricted to steady-state 
datasets available in the literature. Although these comparisons
provide qualitative confidence in the model’s performance, they 
cannot fully capture the transient dynamics represented in the
unsteady formulation. Future experimental studies focusing on 
time-resolved measurements of sediment concentration profiles 
under ice cover would be valuable for further model verification.
International Journal for Numerical and Analytical Methods in Geomechanics, 2025
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Appendix A: Intermediate Mathematical Derivations in GITT 

This appendix presents the intermediate mathematical derivations used 
directly in the GITT calculations. We provide three intermediate calcula-
tions: (i) the eigenfunction calculation (Equation 43 ), (ii) the derivation
of 𝑓( 𝑧) in Equation ( 49 ), and (iii) the construction of the system of ODEs
(Equation 50 ). Interested readers may refer to these steps for a complete,
step-by-step understanding of the GITT formulation. 

(i) Eigenfunction calculation (Equation 43): The general solution of the 
auxiliary problem (Equation 40 ) can be expressed as 

𝜓𝑛 ( 𝑧) = 𝑘1 cos ( 𝛽𝑛 𝑧) + 𝑘2 sin ( 𝛽𝑛 𝑧) . (A1) 

Using the boundary condition given in Equation ( 42 ) in Equation ( A1 ),
we obtain 𝑘1 = 0 . Hence, 

𝜓𝑛 ( 𝑧) = 𝑘2 sin ( 𝛽𝑛 𝑧) . (A2) 

Next, by applying the other boundary condition (specified in Equation 41 )
to Equation ( A2 ), we find that, for nonzero 𝜓𝑛 ( 𝑧) , 

𝛽𝑛 = 𝑛𝜋. (A3) 

Neglecting the arbitrary constant, the eigenfunction can therefore be
written as 

Ψ𝑛 ( 𝑧) = sin ( 𝛽𝑛 𝑧) . (A4) 

Let us now normalize Equation ( A4 ) by 
√
𝑁𝑛 , where 𝑁𝑛 can be calculated

as follows: 

𝑁𝑛 = ∫
1 

0 

𝜓2 𝑛 ( 𝑧) 𝑑𝑧 = ∫
1 

0 

sin 
2 
( 𝛽𝑛 𝑧) 𝑑𝑧 =

1 

2 
. (A5) 

Hence, the normalized eigenfunctions are given by 

𝜓𝑛 ( 𝑧) =
Ψ𝑛 ( 𝑧) √
𝑁

=
sin ( 𝛽𝑛 𝑧) √

1∕2 
. (A6) 
𝑛 
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( 𝑖 𝑖 ) 𝐷𝑒 𝑟 𝑖𝑣𝑎 𝑡𝑖𝑜 𝑛 𝑜 𝑓 𝑓( 𝑧 ) 𝑖𝑛 𝐸𝑞𝑢 𝑎 𝑡𝑖𝑜 𝑛 (49) : The initial condition given in
Equation ( 49 ) can be derived as follows. For 𝑇 = 0 , the forward transform
(Equation 45 ) can be written as 

𝑆̄𝑛 (0) = ∫
1 

0 

𝑈( 𝑧, 𝑇 = 0) 𝜓𝑛 ( 𝑧 ) 𝑑𝑧 . (A7)

In terms of the 𝑧 variable, for 𝑇 = 0 , Equation ( 31 ) gives 

𝑈( 𝑧, 𝑇 = 0) = 𝑆( 𝑧, 𝑇 = 0) − 𝑓( 𝑧) . (A8)

Enforcing the initial condition in Equation ( 28 ), Equations ( A7 ) and ( A8 )
reduces to 

𝑆̄𝑛 (0) = ∫
1 

0 

[ 0 − 𝑓( 𝑧)] 𝜓𝑛 ( 𝑧 ) 𝑑𝑧 , 𝑛 = 1 , 2 , 3 , . . . . (A9)

Replacing the dummy index 𝑛 by 𝑚, we obtain 

𝑆̄𝑚 (0) = ∫
1 

0 

[ 0 − 𝑓( 𝑧)] 𝜓𝑚 ( 𝑧 ) 𝑑𝑧 , 𝑚 = 1 , 2 , 3 , . . . . (A10)

Equation ( A10 ) requires the expression for 𝑓( 𝑧) , which can be obtained
by solving Equations ( 32 )–( 34 ). Here, we employ the standard finite-
difference method (FDM) to compute 𝑓 ( 𝑦 ) . Once 𝑓 ( 𝑦 ) is determined, the
corresponding 𝑓( 𝑧) can be obtained using the transformation between 𝑦
and 𝑧 given in Equation ( 36 ). The detailed procedure for obtaining 𝑓 ( 𝑦 ) is
outlined below. 

Using a uniform grid 𝑦𝑗 = 𝑎 + ( 𝑗 − 1)Δ𝑦, 𝑗 = 1 , . . . , 𝑁𝑓 , with Δ𝑦 = (1 −
𝑎)∕( 𝑁𝑓 − 1) , the derivatives at interior nodes 𝑗 = 2 , . . . , 𝑁𝑓 − 1 are
approximated by central differences: 

𝑑2 𝑓 

𝑑𝑦2 
|||𝑦𝑗 ≈ 𝑓𝑗+ 1 − 2 𝑓𝑗 + 𝑓𝑗− 1 

Δ𝑦2 
,

𝑑𝑓 

𝑑𝑦 

|||𝑦𝑗 ≈ 𝑓𝑗+ 1 − 𝑓𝑗− 1 

2Δ𝑦 
. (A11)

Substituting these into the ODE (Equation 32 ) yields the discrete equation

𝐾𝑗 
𝑓𝑗+ 1 − 2 𝑓𝑗 + 𝑓𝑗− 1 

Δ𝑦2 
+ ( 𝐾′

𝑗 
+ 𝑉𝑗 )

𝑓𝑗+ 1 − 𝑓𝑗− 1 

2Δ𝑦 
+ 𝑉′

𝑗 
𝑓𝑗 = 0 , (A12)

which can be written in tridiagonal form as 

𝑎
( 𝑗) 
− 𝑓𝑗− 1 + 𝑎

( 𝑗) 

0 
𝑓𝑗 + 𝑎

( 𝑗) 
+ 𝑓𝑗+ 1 = 0 , (A13)

where 

𝑎
( 𝑗) 
− =

𝐾𝑗 

Δ𝑦2 
−
𝐾′
𝑗 
+ 𝑉𝑗 

2Δ𝑦 
, 𝑎

( 𝑗) 

0 
= −

2 𝐾𝑗 

Δ𝑦2 
+ 𝑉′

𝑗 
, 𝑎

( 𝑗) 
+ =

𝐾𝑗 

Δ𝑦2 
+
𝐾′
𝑗 
+ 𝑉𝑗 

2Δ𝑦 
. 

(A14)
The boundary conditions (Equations 33 and 34 ) are enforced directly as 

𝑓1 = 𝑆𝑎 at 𝑦 = 𝑎, 𝑓𝑁𝑓 = 0 at 𝑦 = 1 , (A15)

resulting in a tridiagonal linear system 

𝐴𝑓 𝐟 = 𝐛 , 𝐟 = [ 𝑓1 , 𝑓2 , . . . , 𝑓𝑁 ]
𝑇 . (A16)

This system was solved in MATLAB using the sparse direct solver: 

𝐟 = 𝐴𝑓 ∖ 𝐛 . (A17)

( 𝑖 𝑖 ) 𝐶𝑜 𝑛𝑠 𝑡𝑟 𝑢𝑐 𝑡𝑖𝑜 𝑛 𝑜 𝑓 𝑡ℎ𝑒 𝑠 𝑦𝑠 𝑡𝑒 𝑚 𝑜 𝑓 𝑂𝐷𝐸 𝑠 ( 𝐸 𝑞𝑢𝑎 𝑡𝑖𝑜 𝑛 50) : Using the
orthogonality condition defined in Equation ( 44 ), Equation ( 48 ) can be
re-written as 

𝑑𝑆̄𝑚 
𝑑𝑇 

=
∞∑
𝑛= 1 

𝑆̄𝑛 ( 𝑇)

[ 

− 𝛽2 𝑛 ∫
1 

0 

𝐾( 𝑧) 

(1 − 𝑎) 
2 
𝜓𝑛 ( 𝑧 ) 𝜓𝑚 ( 𝑧 ) 𝑑𝑧 
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+ ∫
1 

0 

{ 

1 

1 − 𝑎 

𝜕𝐾( 𝑧) 

𝜕𝑧 
+ 𝑉( 𝑧)

} 

1 

1 − 𝑎 

𝑑𝜓𝑛 ( 𝑧) 

𝑑𝑧 
𝜓𝑚 ( 𝑧) 𝑑𝑧 

+∫
1 

0 

1 

1 − 𝑎 

𝜕𝑉( 𝑧) 

𝜕𝑧 
𝜓𝑛 ( 𝑧 ) 𝜓𝑚 ( 𝑧 ) 𝑑𝑧

] 

, for 𝑚 = 1 , 2 , 3 , . . . . 

(A18) 

The terms inside the square brackets of Equation ( A18 ) are denoted by
𝑔𝑚𝑛 . Consequently, Equation ( A18 ) can be rewritten as 

𝑑𝑆̄𝑚 
𝑑𝑇 

=
∞∑
𝑛= 1 

𝑆̄𝑛 ( 𝑇) 𝑔𝑚𝑛 , for 𝑚 = 1 , 2 , 3 , . . . . (A19) 

As we consider 𝑛 = 𝑁 to denote the total number of terms retained in the
truncated series, Equation ( A19 ) can be expressed as 

𝑑𝑆̄𝑚 
𝑑𝑇 

=
𝑁 ∑
𝑛= 1 

𝑔𝑚𝑛 𝑆̄𝑛 ( 𝑇) , 𝑚 = 1 , 2 , . . . , 𝑁. (A20) 

This system of ODEs, together with the initial condition given by
Equation ( 49 ), can be written compactly in matrix form as 

𝑨
𝑑𝑺 ( 𝑇) 

𝑑𝑇 
= 𝑮𝑺 ( 𝑇) , 𝑺 ( 𝑇 = 0) = 𝑺0 , (A21) 

where 𝑨 = 𝑰𝑁×𝑁 , the identity matrix of order 𝑁 ×𝑁. The expressions of
𝑺 ( 𝑇) , 𝑮 , and 𝑺0 are as follows: 

𝑺 ( 𝑇) =

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑆̄1 ( 𝑇) 

𝑆̄2 ( 𝑇) 

⋮ 

𝑆̄𝑁 ( 𝑇) 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
, 𝑮 =

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑔11 𝑔12 ⋯ 𝑔1 𝑁 

𝑔21 𝑔22 ⋯ 𝑔2 𝑁 

⋮ ⋮ ⋱ ⋮ 

𝑔𝑁1 𝑔𝑁2 ⋯ 𝑔𝑁𝑁 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
, and 

𝑺0 =

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

− ∫ 1 
0 
𝑓( 𝑧 ) 𝜓1 ( 𝑧 ) 𝑑𝑧 

− ∫ 1 
0 
𝑓( 𝑧 ) 𝜓2 ( 𝑧 ) 𝑑𝑧 

⋮ 

− ∫ 1 
0 
𝑓( 𝑧 ) 𝜓𝑁 ( 𝑧 ) 𝑑𝑧 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
. 

The coefficient matrix 𝑮 was evaluated through numerical integration,
and the initial vector 𝑺0 was also obtained numerically. The resulting 
system of first-order ODEs (Equation A21 ) was then solved using an
explicit Runge–Kutta integration scheme, which efficiently captures the 
transient evolution of 𝑆̄𝑚 while maintaining numerical stability. The 
values of 𝑁 and 𝑁𝑓 were set to 30 and 101, respectively. The Runge–
Kutta integration was carried out over a time interval from 𝑇 = 0 s to
the prescribed end time, with adequately spaced time points. A relative
tolerance of 1 × 10− 4 and an absolute tolerance of 1 × 10− 4 were used,
ensuring sufficient temporal resolution for accurately capturing the 
transient evolution of the concentration profiles. 

Appendix B: Detailed Finite Volume Discretization of the 
Governing Equations 

The detailed FVM discretization corresponding to the governing equa-
tion is presented herein. Integrating Equation ( 27 ) over the control volume
and across a time interval from 𝑇 to 𝑇 + Δ𝑇 yields 

∫
𝑇+ Δ𝑇 

𝑇 

[ 

∫
Ω𝑖 

𝜕 𝑆 ( 𝑦 , 𝑇 ) 

𝜕𝑇 
𝑑Ω

] 

𝑑𝑇 = ∫
𝑇+ Δ𝑇 

𝑇 

[ 

∫
Ω𝑖 

𝐾( 𝑦 )
𝜕2 𝑆 ( 𝑦 , 𝑇 ) 

𝜕 𝑦2 
𝑑Ω

] 

𝑑𝑇 

+ ∫
𝑇+ Δ𝑇 

𝑇 

[ 

∫
Ω𝑖 

{ 

𝜕 𝐾( 𝑦 ) 

𝜕𝑦 
+ 𝑉( 𝑦)

} 

𝜕 𝑆 ( 𝑦 , 𝑇 ) 

𝜕𝑦 
𝑑Ω

] 

𝑑𝑇 

+ ∫
𝑇+ Δ𝑇 

𝑇 

[ 

∫
Ω

𝜕 𝑉( 𝑦 ) 

𝜕𝑦 
𝑆 ( 𝑦 , 𝑇 ) 𝑑Ω

] 

𝑑𝑇. (B1) 
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A
 articles are governed by the applicable C

reative
Utilizing first-order Euler backward (implicit) for time discretization
and applying Gauss’s divergence theorem where required, the aforemen-
tioned equation simplifies to 

( 𝑆𝑙+ 1 
𝑖 

− 𝑆𝑙 
𝑖 
)ΔΩ𝑖 = 𝐾( 𝑦 )

[ ( 

𝐴
𝜕 𝑆 

𝜕 𝑦 

) 𝑙+ 1 

𝑖+ 1∕2 
−

( 

𝐴
𝜕 𝑆 

𝜕 𝑦 

) 𝑙+ 1 

𝑖− 1∕2 

] 

Δ𝑇 

+
{ 

𝜕 𝐾( 𝑦 ) 

𝜕𝑦 
+ 𝑉( 𝑦)

} [
( 𝐴𝑆)𝑙+ 1 

𝑖+ 1∕2 − ( 𝐴𝑆)𝑙+ 1 
𝑖− 1∕2 

]
Δ𝑇 

+
𝜕 𝑉( 𝑦 ) 

𝜕𝑦 
𝑆𝑙+ 1 
𝑖 
(ΔΩ𝑖 )(Δ𝑇) . (B2)

Here, 𝑆𝑙 
𝑖 
and 𝑆𝑙+ 1 

𝑖 
represent the cell-averaged value of 𝑆 over Ω𝑖 at times 𝑇

and 𝑇 + Δ𝑇, respectively, denoted as 

𝑆𝑙 
𝑖 
= 1 

Ω𝑖 ∫Ω𝑖 𝑆 ( 𝑦 , 𝑇 ) 𝑑Ω, (B3)

and 

𝑆𝑙+ 1 
𝑖 

= 1 

Ω𝑖 ∫Ω𝑖 𝑆 ( 𝑦 , 𝑇 + Δ𝑇 ) 𝑑Ω, (B4)

where ΔΩ𝑖 ( = 𝐴Δ𝑦) denotes the volume of the target cell 𝑖, with 𝐴
indicating the face area of said target cell. In order to derive the suitable
form of the discretized equations from Equation ( B2 ), the face center
values 𝑆𝑙+ 1 

𝑖+ 1∕2 and 𝑆
𝑙+ 1 
𝑖− 1∕2 , as well as the face center gradient values(

𝜕𝑆 

𝜕𝑦 

)𝑙+ 1 
𝑖+ 1∕2 

and 
(
𝜕𝑆 

𝜕𝑦 

)𝑙+ 1 
𝑖− 1∕2 

, are needed at the faces 𝑖 + 1∕2 and 𝑖 − 1∕2

respectively. Utilizing a second-order central difference scheme for the
gradient face center values leads to the following expressions: 

( 

𝜕𝑆 

𝜕𝑦 

) 𝑙+ 1 

𝑖+ 1∕2 
=
𝑆𝑙+ 1 
𝑖+ 1 − 𝑆𝑙+ 1 

𝑖 

Δ𝑦 
, (B5)

and ( 

𝜕𝑆 

𝜕𝑦 

) 𝑙+ 1 

𝑖− 1∕2 
=
𝑆𝑙+ 1 
𝑖 

− 𝑆𝑙+ 1 
𝑖− 1 

Δ𝑦 
. (B6)

The face center values of 𝑆 at the face centers 𝑖 + 1∕2 and 𝑖 − 1∕2 , are
determined using a quadratic upwind differencing scheme known as
the QUICK (quadratic upstream interpolation for convective kinetics)
scheme in the following manner [ 58 ]: 

𝑆𝑙+ 1 
𝑖+ 1∕2 =

6 

8 
𝑆𝑙+ 1 
𝑖 

+ 3 

8 
𝑆𝑙+ 1 
𝑖+ 1 −

1 

8 
𝑆𝑙+ 1 
𝑖− 1 , (B7)

and 

𝑆𝑙+ 1 
𝑖− 1∕2 =

6 

8 
𝑆𝑙+ 1 
𝑖− 1 +

3 

8 
𝑆𝑙+ 1 
𝑖 

− 1 

8 
𝑆𝑙+ 1 
𝑖− 2 . (B8)

By substituting Equations ( B5 )–( B8 ) in Equation ( B2 ), the discretized
equation incorporating the QUICK scheme for the face center values and
central differencing for the gradient terms can be expressed in a concise
form as follows: 

− 1 

8 
Υ𝑦 𝑆

𝑙+ 1 
𝑖− 2 −

(
Υ𝑦𝑦 −

7 

8 
Υ𝑦 

)
𝑆𝑙+ 1 
𝑖− 1 +

( 

1 + 2Υ𝑦𝑦 −
3 

8 
Υ𝑦 − Υ

) 

𝑆𝑙+ 1 
𝑖 

−
( 

Υ𝑦𝑦 +
3 

8 
Υ𝑦 

) 

𝑆𝑙+ 1 
𝑖+ 1 = 𝑆𝑙 

𝑖 
. (B9)

The mathematical expressions for the coefficients, denoted as Υ𝑦𝑦 , Υ𝑦 , and
Υ, are as follows: 

Υ𝑦𝑦 = 𝐾( 𝑦 )
Δ𝑇 

(Δ𝑦 ) 
2 
, (B10)
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Υ𝑦 =

{ 

𝜕 𝐾( 𝑦 ) 

𝜕𝑦 
+ 𝑉( 𝑦)

} 

Δ𝑇 

Δ𝑦 
, (B11) 

and 

Υ =
𝜕 𝑉( 𝑦 ) 

𝜕𝑦 
Δ𝑇. (B12) 

The discretized equation ( B9 ) is applicable to the internal nodes 3, 4, . . . ,
𝑛𝑐 𝑒 𝑙𝑙 − 1 . However, special attention is required for the nodes closest to the
boundaries, such as 1, 2, and 𝑛𝑐 𝑒 𝑙𝑙 . In the QUICK scheme, the 𝑆-value at
face centers is calculated using the formulas provided by Equations ( B7 )
and ( B8 ), which involve three nodal values. At the boundary node 1, 𝑆 is
given at the south face 𝑖 − 1∕2 as 𝑆𝑖− 1∕2 = 𝑆𝐵𝑆 , but there is no south ( 𝑖 − 1 )
node available to evaluate 𝑆𝑖+ 1∕2 at the north face using Equation ( B7 ).
To address this issue, following the approach of Leonard [ 59 ], a linear
extrapolation is performed to create a mirror node at a distance of (Δ𝑦)∕2
to the south of the physical boundary. This extrapolation to the mirror
node provides the required 𝑆 node for the formula given by Equation ( B7 ),
which calculates 𝑆𝑖+ 1∕2 at the north face of the target cell 1. Consequently,
the expression for 𝑆𝑙+ 1 

𝑖+ 1∕2 can be formulated as follows: 

𝑆𝑙+ 1 
𝑖+ 1∕2 =

7 

8 
𝑆𝑙+ 1 
𝑖 

+ 3 

8 
𝑆𝑙+ 1 
𝑖+ 1 −

2 

8 
𝑆𝑙+ 1 
𝐵𝑆 
. (B13) 

The face center value at the south face can be directly obtained from the
provided boundary condition as follows: 

𝑆𝑙+ 1 
𝑖− 1∕2 = 𝑆𝑙+ 1 

𝐵𝑆 
. (B14) 

The gradient term at the face centers has been computed using the
following expressions: 

( 

𝜕𝑆 

𝜕𝑦 

) 𝑙+ 1 

𝑖+ 1∕2 
=
𝑆𝑙+ 1 
𝑖+ 1 − 𝑆𝑙+ 1 

𝑖 

Δ𝑦 
, (B15) 

and 

( 

𝜕𝑆 

𝜕𝑦 

) 𝑙+ 1 

𝑖− 1∕2 
=

− 8 𝑆𝑙+ 1 
𝐵𝑆 

+ 9 𝑆𝑙+ 1 
𝑖 

− 𝑆𝑙+ 1 
𝑖+ 1 

3Δ𝑦 
. (B16) 

Using Equations ( B13 )–( B16 ) in Equation ( B2 ), the discretized equation at
node 1 results in: 

(
1 + 4Υ𝑦𝑦 −

7 

8 
Υ𝑦 − Υ

)
𝑆𝑙+ 1 
𝑖 

−
( 

4 

3 
Υ𝑦𝑦 +

3 

8 
Υ𝑦 

) 

𝑆𝑙+ 1 
𝑖+ 1 

= 𝑆𝑙 
𝑖 
+

( 

8 

3 
Υ𝑦𝑦 −

5 

4 
Υ𝑦 

) 

𝑆𝑙+ 1 
𝐵𝑆 
. (B17) 

For cell 2, the following approximations can be made for the face center
values and the gradient values: 

( 

𝜕𝑆 

𝜕𝑦 

) 𝑙+ 1 

𝑖+ 1∕2 
=
𝑆𝑙+ 1 
𝑖+ 1 − 𝑆𝑙+ 1 

𝑖 

Δ𝑦 
, (B18) 

( 

𝜕𝑆 

𝜕𝑦 

) 𝑙+ 1 

𝑖− 1∕2 
=
𝑆𝑙+ 1 
𝑖 

− 𝑆𝑙+ 1 
𝑖− 1 

Δ𝑦 
, (B19) 

𝑆𝑙+ 1 
𝑖+ 1∕2 =

6 

8 
𝑆𝑙+ 1 
𝑖 

+ 3 

8 
𝑆𝑙+ 1 
𝑖+ 1 −

1 

8 
𝑆𝑙+ 1 
𝑖− 1 , (B20) 

and 

𝑆𝑙+ 1 
𝑖− 1∕2 =

7 

8 
𝑆𝑙+ 1 
𝑖− 1 +

3 

8 
𝑆𝑙+ 1 
𝑖 

− 2 

8 
𝑆𝑙+ 1 
𝐵𝑆 
. (B21) 
International Journal for Numerical and Analytical Methods in Geomechanics, 2025
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reative C
Utilizing Equations ( B18 )–( B21 ) within Equation ( B2 ), the discretized
equation for cell 2 takes the following form: 

−
(
Υ𝑦𝑦 − Υ𝑦 

)
𝑆𝑙+ 1 
𝑖− 1 +

( 

1 + 2Υ𝑦𝑦 −
3 

8 
Υ𝑦 − Υ

) 

𝑆𝑙+ 1 
𝑖 

−
( 

Υ𝑦𝑦 +
3 

8 
Υ𝑦 

) 

𝑆𝑙+ 1 
𝑖+ 1 = 𝑆𝑙 

𝑖 
+ 2 

8 
Υ𝑦 𝑆

𝑙+ 1 
𝐵𝑆 
. (B22)

At cell 𝑛𝑐 𝑒 𝑙𝑙 , the face center values and the gradient values at the face
centers can be approximated as follows: ( 

𝜕𝑆 

𝜕𝑦 

) 𝑙+ 1 

𝑖+ 1∕2 
=
8 𝑆𝑙+ 1 
𝐵𝑁 

− 9 𝑆𝑙+ 1 
𝑖 

+ 𝑆𝑙+ 1 
𝑖− 1 

3Δ𝑦 
, (B23)

( 

𝜕𝑆 

𝜕𝑦 

) 𝑙+ 1 

𝑖− 1∕2 
=
𝑆𝑙+ 1 
𝑖 

− 𝑆𝑙+ 1 
𝑖− 1 

Δ𝑦 
, (B24)

𝑆𝑙+ 1 
𝑖+ 1∕2 = 𝑆𝑙+ 1 

𝐵𝑁 
, (B25)

and 

𝑆𝑙+ 1 
𝑖− 1∕2 =

6 

8 
𝑆𝑙+ 1 
𝑖− 1 +

3 

8 
𝑆𝑙+ 1 
𝑖 

− 1 

8 
𝑆𝑙+ 1 
𝑖− 2 , (B26)

where 𝑆𝑙+ 1 
𝐵𝑁 

is the 𝑆 value at the face center 𝑖 + 1∕2 of the target cell 𝑛𝑐 𝑒 𝑙𝑙 .
Using ( B23 )–( B26 ) in Equation ( B2 ), the discretized equation at cell 𝑛𝑐 𝑒 𝑙𝑙 
is written as follows: 

− 1 

8 
Υ𝑦 𝑆

𝑙+ 1 
𝑖− 2 −

( 

4 

3 
Υ𝑦𝑦 −

6 

8 
Υ𝑦 

) 

𝑆𝑙+ 1 
𝑖− 1 +

( 

1 + 4Υ𝑦𝑦 +
3 

8 
Υ𝑦 − Υ

) 

𝑆𝑙+ 1 
𝑖 

= 𝑆𝑙 
𝑖 
+

( 

8 

3 
Υ𝑦𝑦 + Υ𝑦 

) 

𝑆𝑙+ 1 
𝐵𝑁 
. (B27)

In a concise format, the discretized equations for all the cells (Equa-
tions B9, B17, B22 and B27 ) can be expressed as follows: 

𝑎𝑖− 2 𝑆
𝑙+ 1 
𝑖− 2 + 𝑎𝑖− 1 𝑆

𝑙+ 1 
𝑖− 1 + 𝑎𝑖 𝑆

𝑙+ 1 
𝑖 

+ 𝑎𝑖+ 1 𝑆
𝑙+ 1 
𝑖+ 1 = 𝑟𝑖 , (B28)

where 𝑎𝑖− 2 , 𝑎𝑖− 1 , 𝑎𝑖 , and 𝑎𝑖+ 1 represent the corresponding coefficients of
the cell values 𝑆𝑙+ 1 

𝑖− 2 , 𝑆
𝑙+ 1 
𝑖− 1 , 𝑆

𝑙+ 1 
𝑖 

, and 𝑆𝑙+ 1 
𝑖+ 1 , respectively. For instance, for

Equation ( B27 ), the expressions for the coefficients 𝑎𝑖− 2 , 𝑎𝑖− 1 , 𝑎𝑖 , and 𝑎𝑖+ 1 
are as follows: 

𝑎𝑖− 2 = − 1 
8 
Υ𝑦 , (B29)

𝑎𝑖− 1 = −
( 

4 

3 
Υ𝑦𝑦 −

6 

8 
Υ𝑦 

) 

, (B30)

𝑎𝑖 =
( 

1 + 4Υ𝑦𝑦 +
3 

8 
Υ𝑦 − Υ

) 

, (B31)

𝑎𝑖+ 1 = 0 , (B32)

and 

𝑟𝑖 = 𝑆𝑙 
𝑖 
+

( 

8 

3 
Υ𝑦𝑦 + Υ𝑦 

) 

𝑆𝑙+ 1 
𝐵𝑁 
. (B33)

Equation ( B28 ) will form a system of 𝑛𝑐 𝑒 𝑙𝑙 number of linear equations with
𝑛𝑐 𝑒 𝑙𝑙 number of unknowns. This system of linear equations is solved
using the Gauss–Seidel iteration technique. The Gauss–Seidel iteration
commences with the initial guess value of [ 𝑆𝑙+ 1 

1 
|(0) ⋯ 𝑆𝑙+ 1 𝑛𝑐 𝑒 𝑙𝑙 

|(0) ] . The
Gauss–Seidel step is written as: 

𝑆𝑙+ 1 
𝑖 

|( 𝑝) = 𝑆𝑙+ 1 
𝑖 

|( 𝑝− 1) 
+ 1 

𝑎𝑖 

[
𝑟𝑖 −

(
𝑎𝑖− 2 𝑆

𝑙+ 1 
𝑖− 2 |( 𝑝) + 𝑎𝑖− 1 𝑆

𝑙+ 1 
𝑖− 1 |( 𝑝) + 𝑎𝑖 𝑆

𝑙+ 1 
𝑖 

|( 𝑝− 1) + 𝑎𝑖+ 1 𝑆
𝑙+ 1 
𝑖+ 1 |( 𝑝− 1) )]. 

(B34)
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In a condensed form, the above equation becomes: 

𝑆𝑙+ 1 
𝑖 

|( 𝑝) = 𝑆𝑙+ 1 
𝑖 

|( 𝑝− 1) + 𝑅 𝑒 𝑠 𝑖 
𝑎𝑖 

, (B35) 

where 

𝑅 𝑒 𝑠 𝑖 = 𝑟𝑖 −
(
𝑎𝑖− 2 𝑆

𝑙+ 1 
𝑖− 2 |( 𝑝) + 𝑎𝑖− 1 𝑆

𝑙+ 1 
𝑖− 1 |( 𝑝) + 𝑎𝑖 𝑆

𝑙+ 1 
𝑖 

|( 𝑝− 1) + 𝑎𝑖+ 1 𝑆
𝑙+ 1 
𝑖+ 1 |( 𝑝− 1) ). 

(B36) 
This is valid for all cells 𝑖 and iteration steps, 𝑝 ≥ 1 . To track convergence,
the residual error in a specific iteration 𝑝 for a given cell 𝑖 is calculated as
follows: 

𝜖
( 𝑝) 

𝑖 
= 𝑆𝑙+ 1 

𝑖 
|( 𝑝) − 𝑆𝑙+ 1 

𝑖 
|( 𝑝− 1) . (B37) 

Moreover, convergence is defined as the state when the following criterion
is satisfied: the root mean square is less than or equal to a certain tolerance
level 𝑒 𝑝 𝑠max , denoted as √ 

1 

𝑛𝑐 𝑒 𝑙𝑙 

∑
∀𝑖 

(
𝜖
( 𝑝) 

𝑖 

)2 ≤ 𝜖𝑚𝑎𝑥 . (B38) 

In the current study, 𝜖max has been set to 10− 6 . For the numerical
simulations, a total of 100 cells ( 𝑛𝑐 𝑒 𝑙𝑙 = 100 ) of uniform size in the vertical
direction have been used, with a time step size of Δ𝑇 = 0 . 001 s. 

Appendix C: Convergence Evaluation of ga–fmincon Calibration 

The convergence behavior of the hybrid optimization scheme was
assessed using the following plots, based on a single randomly selected
run (RUN SC). 

The convergence curve (Figure C1 ) presents the objective function
values (Equation 52 ) over iterations. The objective function decreases
sharply during the initial iterations, followed by minor fluctuations before
reaching an approximately constant value. These fluctuations are small
and do not affect the final optimized parameters, indicating stable and
monotonic convergence. Collectively, the plots support the effectiveness
and stability of the hybrid ga–fmincon approach for calibrating Λ and 𝜎 in
this study. 
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FIGURE C1 Convergence plots of the optimization scheme for
RUN-SC. 
23 of 23

om
m

ons L
icense


	Suspended Sediment Transport in Ice-Covered Turbulent Flow: Semi-Analytical Solution and Parametric Sensitivity
	1 | Introduction
	2 | Problem Description
	2.1 | Governing Equation
	2.2 | Description of Various Coefficients

	3 | Solution Methodology
	3.1 | Semi-Analytical Solution Using GITT
	3.2 | Numerical Solution Using Cell-Centered FVM

	4 | Results and Discussion
	4.1 | Validation of Semi-Analytical Solution Against FVM Solution
	4.2 | Influence of Different Hydraulic Parameters and Physical Interpretation
	4.3 | Comparison With Experimental Dataset
	4.4 | Sensitivity Analysis of Different Parameters
	4.5 | Theoretical Significance of the Present Research
	4.6 | Practical Significance of the Present Research

	5 | Conclusions
	Author Contributions
	Acknowledgments
	Conflicts of Interest
	Data Availability Statement
	References
	Appendix A: Intermediate Mathematical Derivations in GITT
	Appendix B: Detailed Finite Volume Discretization of the Governing Equations
	Appendix C: Convergence Evaluation of ga-fmincon Calibration


