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ARTICLE INFO ABSTRACT
Keywords: The initial phases of milk coagulation for cheese manufacturing can be tracked by an integro-
Rennet coagulation differential equation known as a population balance equation. In this article, a new analytical

Cheese manufacturing

Nonlinear integro-partial differential equations
Multi stage Bernstein polynomials

Finite volume scheme

approach using multistage Bernstein polynomials is presented to solve a rennet-induced coagula-
tion equation for the first time. The existence of the solution and convergence analysis of the
proposed approach are discussed in detail to support the mathematical formulation. Our main
interest is in computing the integral moments, such as the number and total volume/mass
of casein micelles over time. These moments are evaluated by approximating them with the
linear combinations of Bernstein polynomials that involve unknown coefficients. Furthermore, the
unknown coefficients are determined by selecting an appropriate number of collocation points,
based on the considered time span of the process. To test the accuracy and efficiency of the new
approach, the new analytical solutions for the integral moments are obtained for constant, sum
and product coagulation kernels and results are verified by comparing with the existing finite
volume scheme and Picard’s method.
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1. Introduction

The volume of milk used to make cheese is increasing globally, and control of milk coagulation, one of the first steps in cheese
production, is essential to achieve high yield and consistent quality. Milk is a complex fluid composed of various proteins, fats,
carbohydrates, vitamins, and minerals. Among its proteins, caseins are the most abundant, existing primarily in the form of casein
micelles. In milk, casein proteins (alpha-casein, beta-casein, and kappa-casein) form micelles, which are spherical structures that hold
these proteins together. The coagulation process initiates with the cleavage of milk proteins through the action of the proteolytic
enzyme complex known as rennet. The rennet enzyme interacts with the natural colloidal particles called casein micelles present
in milk, resulting in their aggregation to form a coagulum [1,2]. This coagulum is then cut to form curd. These curds can then
be further processed to produce various types of cheese. Upon adding rennet to milk, it selectively acts on kappa-casein, a hairy
structure found on the casein micelles. The rennet enzyme cleaves the kappa-casein molecules, which leads to the destabilization of
the micelles and prompts their aggregation. Three consecutive processes occur during milk enzymatic coagulation treatment, two of
which are important for mathematical modelling of the coagulation process. First of all, the casein micelles undergo proteolysis to
produce unstable paracasein micelles and soluble peptides as shown below in Fig. 1. The coagulation of unstable paracasein micelles
(of volumes x and y) and occurs at a rate f(x, y,?), as illustrated in Fig. 2.

The coagulation process transforms liquid milk into a gel-like structure, which is cut and then separates into curds and whey over
time. After the whey is drained, the remaining curds are used to produce the cheese. A number density function (number of particles
in a differential volume) 7(x, ) can be used to study the evolving micelle size distribution during coagulation. The coagulation process
of milk can be described using the population balance equation (PBE) [3] given by:

ratev / 2 y A
+ s+
A y A 4

\ j

.4

Casein micelles Enzyme Paracasein Glycomacropeptide

Fig. 1. Representation of first step (proteolysis) of rennet-induced coagulation process.

©-0:0

Fig. 2. Illustration of second step (coagulation to form coagulum) of rennet-induced coagulation process.
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on(x,1)
ot

=K, g(x,0)exp(—K;1) + % / B(x =y, y.0n(y, On(x, H)dx — / B(x, y, On(x, Hn(y, Hdx, (€D)]
0 0

with the initial conditions

g(x70) = gO(x), n(x,O) = I’]()(X), X E]Os 00[ (2)

Here, g(x,0) and #n(x,0) are initial concentration of the casein micelles and number density function of paracasein micelles having
volume x > 0 at any time ¢, respectively. The fundamental phase of the enzymatic coagulation process, which is believed to exhibit
first-order kinetics [3], is represented by the first term on the right side of equation (1), K, is the first-order rate constant for
proteolysis, and the second term refers to the process by which casein micelles with volumes x and y merge to generate new casein
micelles with volume x + y at the rate f(x, y,t). The rate f(x, y,t) is known as the coalescence kernel, which is symmetric with respect
to x and y. The third term describes the depletion of casein micelles having volumes x when merging with casein micelles with
volume y.

1.1. Literature review and motivation

The progress over time of changes in particle characteristics brought about by nucleation, growth, aggregation, and breakage
is described by population balance equations (PBEs). PBEs have a broad range of applications in almost all scientific domains such
as chemical engineering [4], nuclear engineering [5], biomedical engineering [6], sprayed fluidized bed granulation [7], electro-
chemistry [8], and personalized medicine [9]. The second stage of the enzymatic coagulation process (1) (shown in Fig. 2) has been
subjected to numerous studies that have examined different components including existence and uniqueness of solutions [10], scaling
and self similarity [11] and gelation effect [12]. Gelation is a phase transition where the numerical method struggles to accurately
preserve mass or volume, leading to challenges in modelling the coagulation process in cheese manufacturing. However, the nonlin-
ear behaviour of the second stage of enzymatic coagulation restricts analytical solutions to only simple structured kernels [13-16].
Existing numerical approaches for the second stage of enzymatic coagulation process are available in literature such as method of
moments [12], Discrete element method [17], Lattice Boltzmann method [18], finite volume schemes [19-21], and sectional meth-
ods [22,23]. Some recently developed semi-analytical approaches for aggregation and breakage models are provided in [24,25] and
references therein. The merits and demerits of aforementioned methods have been discussed in detail in [21,26,27].

However, as per our knowledge, no analytical solutions are available for the combined first two stages of the enzymatic coagulation
process. In the literature, different authors (refer to [3,28] and references therein) solved the combined first-two stages of enzymatic
coagulation process by converting it to the moments form, which is given below:

dpy(t)
dr

K, exp(—K 1) / xPg(x,0)dx + % / / [(x + XY —xP = xX'P|pGe, x" ) f (X, ) f(x,0)dxdx". 3)
0 0 0

Here (1) is the p'" order moment. For p = 0, the zeroth order moment can be captured which provides the total number of paracasein
micelles in the system. Whereas for p = 1, the first order moment can be derived which describes the total volume of paracasein
micelles in the system. In the existing work, the authors used a Dirac delta function (g(x,0) = 6(x — 1)) centred at x = 1 so that for all
moments x” is only evaluated at x = 1 [3,29]. This restriction indicates that the unstable paracasein micelles formed during the initial
phase of the enzymatic coagulation process have the same volume and size distributions cannot be modelled. In addition, traditional
power series expansions were used to expand the integral moments which were dependent on many unknown variables and required
additional calculations, leading to computational expense [30]. It is worth noting that power series expansions are not always the
most efficient or accurate method for approximating functions or calculating integral moments. By using power series expansions,
the integral moments can be approximated as a series of terms involving the unknown variables. This allows for simplification
and potentially more manageable calculations. However, power series expansions typically involve an infinite number of terms, so
truncating the series after a certain number of terms introduces some level of error into the approximation.

Compared to numerous numerical techniques that rely on meshes for computation, a variety of semi-analytic methods are also
available in the literature for solving practical problems involving differential equations [31,32], integral equations [33], and integro-
partial differential equations [34,35]. Some of semi-analytic techniques are B-spline methods [36-38], spectral techniques [39],
special function based spectral technique [40], wavelet techniques [41,42].

In this work, our aim is to develop a meshfree approach based on the multistage Bernstein collocation method for the combined
first-two stages of enzymatic coagulation process in order to track the macroscopic properties by converting the original equation (1)
into the moments form (3). This approach demonstrates great flexibility and robustness in considering both Dirac delta and exponential
initial conditions in order to model the first phase of the milk coagulation process. The use of exponential initial conditions enables
us to analyse a diverse distribution of casein micelles with varying volumes across a broad range of the volume domain, making
it a more practical approach. Moreover, the new approach offers a significant advantage over traditional numerical discretization
methods in that it enables the solution without the need for unphysical restrictive assumptions such as linearization, discretization
or perturbation. To enhance the understanding of the new approach, both existence of the solution and convergence are analyzed in
detail. The accuracy of the new approach is compared against a finite volume method (FVM) and Picard’s method. Particularly in
areas with steep gradients, FVM may introduce numerical diffusion. Sharp gradients and minute details in the solution may not be
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accurately captured due to this diffusion. As well, Picard’s method is most effective for problems with weak nonlinearity. For strongly
nonlinear problems, it may require an excessive number of iterations to reach convergence. Thus the practice of Picard’s method is
computationally expensive.

The rest of content of the article is outlined as follows: The existence of the solution is discussed in Section 2. In next Section 3,
the basics of Bernstein polynomials and the detailed derivation of the multistage Bernstein collocation method for the enzymatic
coagulation process (3) is presented. The convergence analysis is conducted in detail in Section 4. In Section 5, the new approach
is tested against a finite volume scheme and Picard’s method in order to check the accuracy and efficiency for different coagulation
kernels. Next Section 6 is used to make some important remarks and conclusions related to the current study.

2. Existence theorem

In order to establish the existence theorem, the moment equation (3) can be rewritten into the following generalized differential
equation
dp,(t)
dt

= M, K, exp(~K,1) + F(t, u, (1)), 1€[0,L)and p=0,2, %)

where

—

F(t.u,(0) = 5 / / [(x +X) —xP - x’P] B X 0 f (X 0 f(x.0dxdx,
0 0

for the constant, sum kernel, and product kernels, where M = f0°° xPg(x,0)dx. The first order moment has exact solution u, (1) =
[s9)

M (1 - exp~Kiry 4+ 4#1(0) for every kernel g, where y;(0) = / x f(x,0)dx. The initial value problem (IVP) (4) subject to the initial

0
o

condition 1y(0) = / x? f(x,0)dx can be written in the following equivalent integral equation:
0

t

(1) =M, (1 —exp(—K;1)) + / F(s, uy(5))ds + p,(0). (5)
0

Some assumptions on the IVP (4) related to existence of the solution are as follows:

El. yu,(1) €C[0,L]uC'[0,L],
E2. F(t, u,(t)) € C([0, L] x C[0, L] U C'[0, L], [0, c0)).

Theorem 2.1. (Index Theorem) Let X be retract of real Banach space E, X be bounded convex retract of X, and U C X be nonempty
open subset, such that U C X,. If T : X, — X is completely continuous operator, T(X,) C X;, such that there is no fixed point of T in
X, \U, theni(T,U,X)=1.

Proof. See [43]. [

The vector space V' = C[0, L] endowed with ordering p,(1) < /41’;(1‘), forall z € [0, L], and norm ||p,(1)|| = H[léui] |u,(®)|, form a Banach
tel0,

space. Let us define a cone H in the space V'

= : > i >
H {u,,eV : /4,,_O,ré?gg]up(t)_illﬂp(t)ll}, (6)

and an operator

S:H-H, 7)
such that
1
(Spu,)t)=M, (1 - exp(—Klt)) + / F(s, pp(s))ds + p, (0). (8)
0

The integral equation (5) has solution if and only if 41,(#) solve the operator equation

Hy(D) = (Sp,)(@). ©)]
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Lemma 2.1. Let the conditions E1 and E2 hold, then the operator S : H — H is well defined and completely continuous.

Proof. We have exp(—K;t) <1 for t € [0, L], then 1 —exp(—K;f) >0 on [0, L]. Thus S is non-negative operator under the conditions
El and E2. Since

1
(Su,)0) =M, (1—exp(=Ky1)) + / F(s, up(9))ds + y(0), (10)
0
implies
t
Din (Su,)(0= min | M), (1-exp(=K,1) + / F(s, up(s)ds + pp(0) . an
0

As (Spu,)(t) is non-negative on [0, L], thus there exist 0 < A < 1 such that

t

in (Su,)(0) 2 2 max | M, (1 —exp(=Ky0) + / F(s, up(s)ds + p,(0) |, (12)
0
implies,
in (Suy)(e) 2 ANSp)OL. (13)

Thus S is well defined.
Now consider a sequence ( ypn(t)) in H converges to y,(f) € H. Then there exists a constant / such that || Mp,,(t)” <[ for all n.
As F is continuous on ([0, L] X [0, []), we have

t t

[Su,, ()= Su,®O = /F(S,M,,n(s))ds—/F(S,M,,(S))ds , 14)
0 0

— 0, asn— oo, (15)

= [|Su,, (O =S, -0, as n — co. (16)

Hence S : H — H is a continuous operator.
Let G={u, € H : ||y, (1|l <e,e is positive constant} be bounded subset of H. For u, € G,

t

Su,( = M, (1—exp(—=K1)) + / F(s, uy(s))ds + u,(0), 17)
0
t
< tg[l&)z] M, (l - exp(—Klt)) + / F(s, py(8)ds + 11, (0) ], (18)
0
< Mp +L (S,Mp)GIR){i%(]X[O,e] G, #p(t)) * #p(O)’ a2
= S, (1) < . (20)

Thus from Arzela-Ascoli theorem S(G) is relatively compact subset of H, and the operator S : H — H is completely continuous. []

!

-M,-

d U
Lemma 2.2. Suppose that E1 and E2 are satisfied and there exists a constant d > M ,, such that f (s, u,(s)) < ? then there exists

one non-negative solution of the boundary value problem (4) subject to the initial condition y,(0) = /4; .

Proof. Let Hy={u; € H : ||m,|| <d} be open subset of H. We have to show that SH, C H,. For u, € H,

t

Su,t) = M,(1—exp(—K,0)+ / F(s, pp(s)ds + pis @1
0
d- MP _”1’7 t ’
< Mp+ftg[1&)£]/ds+yp, 22)
= ISu,ll <d. (23)
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Since |u,(t)| < d only on Hy, not on the boundary 0H, = H, \ H,. Thus there is no fixed point on boundary 0 H,. Using Theorem 2.1,
i(S,Hy;, H)=1. Thus the IVP (4) has one non-negative solution. []
3. Basics of multistage Bernstein polynomials

3.1. Bernstein polynomials

The Bernstein polynomials of degree m on the interval [0, 1] are given by

B, (1) = < ’ln ) Al =" i=0,1,2,,m,

my\ m!
i) i m—-0"

These Bernstein polynomials can be generalized to any interval for the microscopic investigation of any signal (solution).

where

3.2. Generalized Bernstein polynomials

The Bernstein polynomials can be generalized on any general interval [a, b] by normalizing ¢ on [a, b] with 1 = Z;a, as follows

Bi,m(x)=<rrl> (;:2)1.(1—(2:2))”’#, i=0,1,2,,m.

3.3. Bernstein function approximation

The approximate solution using least degree Bernstein basis polynomials may not converge using the conventional collocation
technique on an interval of large length. The interval [0, L] can be divided into n sub-intervals of equal length A

[0=1g, ;). [y, 251, ... [t,_1, 1, = L],

to get out of this problem. On each sub-interval the Bernstein basis polynomials can be used to approximate a function f(t) € L,[0, L]
as follows

m
flao= Z ¢/B!,(0=ClB\(t), t€[0=19,1,],
i=0

= ) = 2= B}, ()=C) By(t), tElt;,n,
m - i=0

m

fa® =7 "B}, ()=Cy B,(1), tElt, 1,t,=L],

i=0
B (1)
=(cr,cr,...cn| B0 |,
B,
—CTB, @4)

where, the coefficient of function approximation and the corresponding Bernstein basis on j* interval is given by
1 Jj1T —_ 1R/ J Jj T P
¢ =lc)c.cl T, Bo=I[B}, 0B}, ®.....B,, O, j=12..n (25)
3.4. Spline based multi-stage Bernstein collocation method

This section develops a scheme to find the numerical solution of equation (3) to approximate the enzymatic coagulation. To find
the numerical solution of (3), the combined equation of first two stages of coagulation process, that is, the moment equation (3) is
used and can be written as the following generalized differential equation

dp,(t)
dt

for the constant kernel, sum kernel, and the product kernel, where up(0) = ,u", . Using equation (24), differential equation (26) can be
expressed in the following algebraic equation

= M,K, exp(—K 1) + F(t,u,(1)), t€[0,L)and p=0,2, (26)
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CTB' — MK, exp(—K ;1) — F(1,C" B)=0, 27)
where y,(f) = CTB, and B’ = [B;(t), B;(t), ..., B} (D)]. The function u,(f) is divided into n piece-wise series and each series consists
m + 1 unknown Bernstein coefficients, that is, there is need to find the values of n(m + 1) unknown Bernstein coefficients in order to

find the approximate solution. The proposed methodology deals the equation (26) piece-wise on sub-intervals [#,_,#;], i=1,2,...,n
of equal length £ of the interval [0, L). Now, we introduce here m collocation points on the first sub-interval [0 =¢,,?,], given by

1 =to+—h i=12..m (28)
The collocation points (28) transform the equation (27) into m nonlinear algebraic equations on the sub-interval [0 = 1,,,], given by
CT B} (1)) — MK, exp(—K, 1)) — F(t;,,C By (t,) =0. (29)

The equation (29) together with an initial condition ﬂp(O) o CIT B; )= ;4; produces m + 1 nonlinear algebraic equations in contrast
to m+ 1 unknown Bernstein coefficients. The solution of these algebraic equation with suitable method provides the required solution
of (4) on the interval [#,;]. In a similar fashion, we choose m — 1 collocation points, given by

j o i = -
tj—li_tj—1+m_1h’ i=1,2,..m—1, (30)
on the jth sub-interval for 2 < j < n. These collocation points produce m — 1, nonlinear algebraic equations
T pt (4 j J T J —
C Bj(tj_li) - M, K, exp(—K; r;._”) - F(tj_ll.,Cj Bj(tj_”)) =0, 3D
on the respective sub-interval. Using the procedure of spline method, there exist a pair of algebraic equations
Cl B;(t;_) =M, (32)
T p! _ Hk
ClBi(t;_)=M", (33)
in order to maintain the continuity and the smoothness of the solution at left partition node of the next concern sub-interval. Here
M} and M’* are the values of approximate value of y,() and its derivative at 7;,_; on the previous sub-interval. Combination of
the equations (31) and the pair of algebraic equation (32) and (33) produces m + 1 nonlinear algebraic equations. We solve these

algebraic equations for the respective unknown Bernstein coefficients. This complete process provides the required solution on the
interval [0, L).

4. Convergence analysis
Theorem 4.1. Consider u, be a + 1 times continuously differentiable function, and V' be the space of the functions generated with the

Bernstein basis B; = {Bé’a(t),Bé’a(t), ,B{;,a(t)}. Let p, €V be the best fit of Hp On the jth sub-interval of the interval [0, L], then the
error bound is

+1_ N
4, = sy, O SR s (34)
where N = re[rtl;-lill)ffjJ |/4§,a+l)(t)|, and h=t; —t;_;.
Proof. Consider the equivalent a-degree Taylor’s polynomial y, (f) of u,(f) in terms of Hy, (1) as follows
N .
(=1
(D)= Y 1y () By, (0, 35)
i=0 :
and the Taylor’s theorem state that
a i 1
(=t (t—t;_)**
up() — Z Tﬂpg)(l‘j—l) = H;Hl)(f)w ) (36)
i=0 : :
(l _ t'—l)a+1
(a+1) J
< _, 37
] P Y 37)
N
hot+l , 38
- (a+1)! (38)
implies
N
_ a+l
s, = i DI < B (@+ 1) (39)

Thus the approximation ”pa(t) converges to yu; (f) uniformly as h - 0 or @ - c0. []
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Theorem 4.2. Suppose the function f(t, u,(1)) is a Lipschitz continuous, i.e. there exists a constant L such that

| f @y (D) = f Uy % O)N S Ly — py x|V EE L 1,11 and ppy, p, %€ V. (40)

Then the approximate solution ﬂpa(l) of the IVP (4) subject to the boundary condition Hy(0) = yl’] converges uniformly to the exact solution
Hy(1) as h— 0 or a — .

Proof. Suppose y, €V, we have

1

Spy(t) = M,(1 —exp(-K ;1) + / F(s, uy(s))ds + p,y(0). (41)
1)
Since approximation “Pa(’) €V, then

1

Sypa(t) =M, (1 —exp(—-K 1)) + / F(S,ypa(s))ds + ,up(O). (42)
iy

Thus from equation (41) and (42), we have

]
1Sty = 1y YOI = / |F(s.1y(5) = sy, (5))] ds.
1oy
t
<t / (1) = 1y, (5)]) d.
0

implies

x| Sy = 1y )OI < x| (Lhluy(s) = Hp (1) - (43)

Now using the result of Theorem 4.1, we have

1Sy = 1, YOI < LAYy (5) = (S,
N

<Lhe? T .
(a+ 1!

44)

This completes the proof. []

5. Numerical testing and discussion

The proposed method has been subject to test against finite volume scheme, and Picard’s method for the numerical solutions of
moments equations corresponding to non-gelling constant kernels, sum kernels, and the product kernels in terms of residual error
_ |du,

w= i MK, exp(—K 1)+ F(t, u,(1))|, t€[0,T)and p=0,2, (45)

and absolute error norm

e =|Exact — BCM(N)|. (46)

The definitions of Avgg,, and Endy,, for residual error Rw have been defined by
n
1
Avgr, =~ D Ruw(t), and Endg,=Rw, (47)
n n
i=1

where n is number of test point over the time period, and #; is i test point. The maximum relative error norm p,, =
FV S — Approximate

max
t€[0,L] FVS

All the computational works are performed on Maple-18 and the results are plotted on MATLAB-2017b on the PC with config-
uration (CPU Core(TM) i5-8285U @1.60 GHz, and 8 GB RAM). It is important to note that all the calculations of the normalized
moments are done for dimensionless volume and time. The normalization of the moments is done by dividing with the initial values
of their respective moments.

is also used to validate the methods against existing finite volume scheme.
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Table 1
Error analysis of the moments for constant kernel without proteolysis process.

Hoy M
t Exact N =8 e Exact N =8 e
0 1 1 0 1 1 0
0.306455 0.867131 0.867131 3.1E-09 1 0.999999 1.1E-15
0.817213 0.709921 0.709921 1.9E-09 1 0.999999 2.1E-15
1.327971 0.600966 0.600966 1.3E-09 1 0.999999 9.9E-16
1.940881 0.507501 0.507501 1.3E-09 1 0.999999 1.3E-15

Table 2
Error analysis of the moments for sum kernel without proteolysis process.

Ho Hi
t Exact N=10 e Exact N=10 e
0 1 0.999999  2.2E-15 1 0.999999  2.3E-15
0.1903  0.826711 0.826711 1.8E-13 1 0.999999  3.7E-15
0.5076 0.601938 0.601938 1.3E-13 1 0.999999 3.4E-15
0.8248  0.438322  0.438322  6.3E-14 1 1.000000  4.4E-16
1.2055  0.299542  0.299542  4.2E-14 1 0.999999  7.2E-15

5.1. Coagulation without proteolysis process

In this part, we demonstrate the implementation of a recently formulated method for solving the moment equation of a pure
coagulation equation. This equation can be readily obtained by substituting K; =0 into the given equation (3) which takes the
following form:

0 o0
S / / [t X0 = 3k = 4 px ' 0 (0 f (0 xd', 1€ [0,1) and k=0,1. “8)
0 0
First we validate the results obtained by the new approach with the exact solutions of the moments for a pure coagulation equation
provided in [44] and references therein. For performing the testing, a size-independent and size-dependent kernels are considered
corresponding to an initial condition f(x,0) = e™*. The testing of the accuracy is done in terms of the first two moments (p =0 and

1.

5.1.1. Size-independent constant kernel
The closed form solution of moments for k =0, and 1 for a pure coagulation equation for the constant kernel f(x, y) = 1 provided
in the literature [44] are

2
=—,and pu,=1. 49
Ho ) tan 1 (49)

To test the validity of the proposed methodology, equation (48) has been solved for constant kernel and the results obtained are
demonstrated qualitatively in Table 1.

Table 1 clearly illustrates that the numerical approximations by BCM at N = 8 match very well with the closed-form solution
(Exact) to a significant degree. This shows that the Bernstein collocation method approximated the zeroth and first order moments
with high precision. Table 1 shows that the accuracy of the BCM in terms of the residual errors in the first two order moments is
high, which shows the potential of the new approach.

5.1.2. Size-dependent sum kernel
Now let us consider a more challenging size-dependent sum kernel f(x,y) = x + y with an exponential initial condition. Once
again the closed form moments solution of the equation (48) with sum kernel f(x, y) = x + y given in [44] are listed below:

Hp=e',and p;=1. (50)

The quantitative results for the moments are shown Table 2 for a sum kernel. The results estimated using the BCM numerical approx-
imations match with the closed form solution with a high precision illustrated in Table 2. Table 2 demonstrates that the accuracy of
the proposed technique in terms of the residual errors. It shows that the errors in the zeroth and first order moments are of the order
10~13 and 10715, respectively for N = 10.
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Table 3
Error analysis of the moments for constant kernel.
K, =5 K, =10
Avgr, Endg, Avgp, Endg,

w0 BCM(6) BCM(8) BCM(6) BCM(8) BCM(6) BCM(8) BCM(6) BCM(8)

Ho(1) 0.018970 0.003503 7.8E-06 3.5E-07 0.301104 0.077546 4.4E-07 4.4E-08
(1) 0.037608 0.001654 7.0E-06 2.5E-07 0.278630 0.079749 4.4E-07 6.0E-08
Hy (D) 0.056822 0.010533 8.5E-06 3.1E-07 0.526254 0.175974 6.9E-07 1.3E-07

5.2. Coagulation with proteolysis process

Here we test the accuracy of the new approach by considering the coagulation with the proteolysis process. The comparison is
conducted for an arbitrary exponential initial condition f(x,0) =™ and g(x,0) = f(x,0) for the purpose of testing. However, both
approaches are flexible and robust to work with any form of g(x,0). The numerical scheme of Picard’s iterative method is presented
in Appendix A.

5.2.1. Constant kernel

We begin the testing of the new approach by considering a constant kernel f(x, y) = 1. For this case, we have found the closed
forms of the first and second moments using Picard’s method. Few order moments equations (linear in nature) give exact closed
form solutions depending on the kind of aggregation kernel considered. For other moments (specifically zeroth moment), nonlinear
expressions are obtained and the series solutions are obtained by implementing the multistage Bernstein collocation method (BCM)
and Picard’s method. To check the extent of accuracy of the numerical approximates, residual errors (45) are estimated by considering
different number of series terms. The simulations are run until time ¢t =2 for K; =5 and K; = 10.

Figs. 3(a) and 4(a) demonstrate that the accuracy of the zeroth order moments using different techniques. Figures reveal that the
BCM solutions match very well with the exact solution and FVS [45], whereas the accuracy of Picard’s method deteriorates after
time ¢t = 0.4. The relationship between the accuracy of the solutions and the value of a, which represents the degree of Bernstein
polynomials in BCM is readily apparent. Theorem 4.2 states, as the degree of the Bernstein polynomials « increases, the accuracy of
the solutions improves considerably (cf. Table 3). However, it is important to note that increasing the number of iterations in Picard’s
method also leads to a rise in computational complexity.

In addition, for K; =5 and K; = 10, Figs. 3(c) and 4(c) illustrate the total mass in the system (y;), and all methods show
equal accuracy, qualitatively. It can be seen that the total mass of paracasein micelles increases due to enzymatic proteolysis and then
remains constant as coagulation progresses. We also analyse the effect of the values of K, on the proteolysis process. While considering
K, =10, the proteolysis process experiences a reduced duration, completing by # = 0.61 (as depicted in Fig. 4(c)). Furthermore, the
second order moments presented in Figs. 3(e) and 4(e) are estimated by all methods with equal precision, with which one can analyse
the variance of particle size over the process.

The qualitative analysis of different order moments illustrated in Figs. 3 and 4 does not allow us to visualise the accuracy clearly.
Therefore, the residual errors are plotted that demonstrate the accuracy of the BCM approach against the Picard’s method (refer to
Figs. 3(b), 3(d), 3(f), 4(b), 4(d) and 4(f)). The quantitative residual errors computed for different order moments demonstrate the
reliability of the proposed method (BCM) and explain the convergence of the methodology. The residual errors in different order
moments are computed and listed in Table 3 for different values of K;. Table shows that the values of K; have a significant effect
on the residual errors, that is, for larger value of K| = 10, the residual errors in the moments are higher than the residual errors
estimated corresponding to K; =5.

5.2.2. Size dependent sum kernel

Now we consider a more complex size dependent sum kernel f(x, y) = x+ y with an exponential initial condition. Due to heavy size
dependency, it is only feasible to find the close solutions of the first order moment. However, the zeroth and second order moments
equations are very complex and very challenging to solve analytically. Therefore, the BCM and Picard’s method are used to solve the
equations corresponding to these moments, and the solutions are compared with the FVS. All the calculations are done for the time
interval [0, 1.2].

The qualitative comparison of BCM and Picard’s method against the FVS is demonstrated in Figs. 5 and 6 for K| =5, and K, = 10,
respectively. It can be seen that both zeroth and first order moments are equally well computed by BCM and Picard’s method and
match well with the FVS (see Figs. 5(a), 6(a), 5(c) and 6(c)). In addition, the second order moments demonstrated in Figs. 5(e) and
6(e) show that the second order moments are almost equally well approximated by both the methods and deviate slightly from the
FVS result. The qualitative residual error analysis is done for different values of K; as shown in Figs. 5(b), 5(d), 5(f), 6(b), 6(d) and
6(f). It can be seen that overall the BCM shows higher quality solutions for the moments than the Picard’s method. The proteolysis
time is considered to be the time when the proteolysis reaction is completed. It is seen when the first order moment becomes constant.
For the proteolysis constant K; =5 the first order moment reaches the coagulation point after ¢ = 1, whereas it reaches to coagulation
point at r = 0.61 for K; = 10 (see Figs. 5(c), and 6(c)). This shows that the large value of K; decreases the duration of proteolysis
process. The numerical results of Picard’s iterative techniques for gelling sum kernel are provided at eight iterations. The gelling
sum kernel describes the rate at which the paracasein micelles aggregate under enzymatic action, with the coagulation rate being

10
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Table 4
Closeness of the proposed methods with FVS in terms of rel-
ative error (p,).

Sum Kernel

K, =5 K, =10

Hy(D) BCM(12) Picards BCM(12) Picards

Ho(1) 1.1E-02 1.3E-02 1.3E-02 4.9E-02
() 6.7E-04 6.7E-04 7.0E-04 2.7E-05
1y (1) 3.9E-01 2.5E-01 5.1E-01 5.1E-01

Table 5
Error analysis of the moments for sum kernel.

K =5 K, =10

Avgpg, Endg, RT AvgRr, Endpg, RT

Hy(1) BCM(8) BCM(12) BCM(8) BCM(12) BCM(8) BCM(8) BCM(8) BCM(12) BCM(8) BCM(12) BCM(8) BCM(8)

Ho (1) 0.013369 0.003618 1.3E-03 1.4E-04 0.98 sec 1.37 sec 0.095563 0.011577 2.5E-06 6.4E-11 1.26 sec 1.54 sec
(1) 0.002079 2.6E-06 7.8E-06 1.4E-08 0.93 sec 1.34 sec 0.083736 0.001923 6.0E-08 4.0E-09 1.39 sec 2.5 sec
1y (1) 0.131664 0.001370 4.6E-05 1.0E-06 1.40 sec 1.46 sec 0.379124 0.032892 9.6E-06 6.3E-06 1.54 sec 1.64 sec

proportional to the sum of the sizes of the interacting particles. Picard’s method can produce more precise results with increase in
the number of iterations, but with a high computational cost. The computation cost is provided in terms of CPU run time (RT) for
h =0.35 in the Table 5. In comparison to Picard’s method, the BCM produces high quality results with low computational cost. The
quantitative errors in the moments are listed in Table 5 for K| =5, and K; = 10 and shows similar behaviour as previous cases, that
is, with K| = 10, the residual errors are higher compared to K; =5 and can be reduced to a desired level by considering large values
of N as demonstrated in table.

Table 4 demonstrates that the proposed methods are sufficiently close to the existing finite volume scheme, serving as a viable
alternative. Additionally, Table 5 shows that the approximate solutions align well with the proposed model.

5.2.3. Product kernel

We enhance the testing by considering a more complex product kernel of the form f(x,y) = xy. For this particular case, linear
differential equations are obtained for the zeroth and first order moments, and therefore exact solutions for both moments are
obtained. However, for the second order moments, a non-linear differential equation is formed which cannot be solved analytically.
Similar to the previous cases, the accuracy of both BCM and Picard’s method are compared against the FVS for different values of K.

The comparison of BCM, Picard’s method and FVS is demonstrated in Figs. 7, and 8 for K; =5, and K| = 10, respectively. The
zeroth and first order moments predicted by BCM and Picard’s method show good precision and match very well with the FVS results
as shown in Figs. 7(a), 7(c), 8(a) and 8(c). In addition, the second order moments estimated by both approaches are compared with
FVS in Figs. 7(e) and 8(e). The results show that Picard’s method shows deviation very early compared to BCM. The accuracy of
Picard’s method is highly dependent on the number of series terms considered. Adding more series terms will make the calculation
computationally expensive. The precision of the BCM can easily be increased by considering high degree of Bernstein polynomials at
a lower computational cost.

The residual errors in different moments are also estimated using the BCM for K| =5, and K, = 10. The results are graphical
depicted in Figs. 7(b), 7(f), 8(b) and 8(f). The results show similar behaviour as the previous cases, that is, for very short times
Picard’s method performs better than the BCM, however, for the longer time domain, the BCM shows lesser residual errors in the
moments compared to the Picard’s method. These residual errors are quantified and listed in Table 6 which shows that the BCM
approach is very robust and reliable to capture these macroscopic properties with high precision at a low computational expense.

From above results and discussion, we can conclude that irrespective of the form of the equations (linear or nonlinear) of the
moments, the BCM has the tendency to estimate the microscopic properties, in particular, zeroth, first and second order moments
with high precision. The flexibility of choosing the degree of Bernstein polynomials makes this technique more appropriate for solving
such problems to obtain high accuracy. In contrast, the accuracy of Picard’s method is strongly dependent of the number of series
terms considered and to increase the accuracy, a large number of series terms is required, making it computationally very expensive.

6. Final conclusions, remarks and future prospects

A collocation method based on multistage Bernstein polynomial is developed to solve a very complex nonlinear integro-partial
differential equation that arises in a model of the enzymatic coagulation of milk. The accuracy of the proposed method was assessed by
evaluating the residual error norm with several different types of kernels. At each sub-interval of the time domain, we apply a newly
developed spline-based multistage Bernstein collocation method for the semi-analytic solution. The proposed method is very efficient
to solve such a nonlinear complex model in comparison to Picard’s method, and equally efficient to more complex discretisation based
FVS. Picard’s method has also shown its usefulness because it provides an exact solution in case of linear differential equation. But it
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Table 6
Error analysis of the moments for product kernel.
K, =5 K, =10
Avg Ry Endg, Avgr,, Endg,

Hy(1) BCM(6) BCM(8) BCM(6) BCM(8) BCM(6) BCM(8) BCM(6) BCM(8)

Ho(1) 0.057130 0.004744 7.4E-04 2.4E-06 8.2E-05 2.3E-06 3.7E-05 6.3E-09
(1) 0.000684 7.9E-06 6.3E-06 1.5E-09 9.2E-04 2.2E-06 1.1E-05 4.1E-11
Hy (1) 0.066937 0.000117 0.403881 0.002032 0.004601 0.008227 7.3E-05 1.1E-05

is not useful for nonlinear differential equations because space and time complexity increase. In such cases, spline-based multi-stage
Bernstein collocation method has shown its supremacy. The tables and figures illustrate that the proposed method converges, that
is, if we increase the degree of polynomials, accuracy increases. The zero vector was used as the initial guess for all the cases and
sub-intervals when evaluating the nonlinear algebraic systems. However, if the problem is stiff and sensitive to the initial guess,
finding an appropriate initial guess may require significant effort.

In future, multiple properties of the system will be tracked by solving multidimensional enzymatic coagulation models for cheese
coagulation.
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Appendix A. Methodology-II (Picard’s iteration method)

This section introduces a numerical scheme based on Picard’s iteration method for the approximate solution of equation (3) to
approximate the enzymatic coagulation. The moment equation combines the first two phases of the enzymatic coagulation process,
is used to determine the numerical solution to (1). The first order moment has exact solution yu; (t) = M (1 — exp K1y + #1(0), subject
to the initial condition y;(0) for every kernel f. The moment equation (3) can be rewritten into the following generalized differential
equation

dp,(t)
dt

for the constant kernel, sum kernel, and the product kernel.
Integrating equation (A.1) from O to ¢ over [0,7T), we have

= M, K, exp(~K 1) + F(t, u,(1)), 1€[0,T)and p=0,2, (A1)

1

up(t) =4 (0) + M, (1 - exp(—Klt)) + / F(s, up(s))ds. (A.2)
0

In contrast to Theorem 4.2, there exists a Picard’s iterative formula given by

t

Hy (D], = M,(0) + M, (1 —exp(—k1)) + / F(s,1y(5)],-)ds, forn>1. (A.3)
0

Here p,(1)], is the n” iteration of the approximate solution of Hy(D).
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Appendix B. Validation of the proposed methodology

To validate the authentication of the proposed methodology, the coefficients of the Bernstein polynomials are tabulated here for
N =6 on the sum kernel for proteolytic constant K; =5

up(1)  Domain cy ¢ 23 [ ¢y s [

Ho(t) tel0,1] 0.990000000 1.616200320 1.160100062 0.908212080 0.673010384  0.508011764 0.384658506
Ho (1) te(l,2] 0.384658506 0.261305248 0.182064098 0.130532372 0.095064400  0.070322364 0.052654326
() te[0,1] 1.008800000 1.790909632 1.874814479 1.949736234 1.968671071 1.980901511 1.986565878
1y (1) te(l,2] 1.986565878 1.992230245 1.992586505 1.993179962 1.993279720 1.993367385 1.993405551
1y (1) te0,1] 2.044600000 1.129329156 5.751506264 5.900897593 15.51260925 25.69200763 77.95256668
1y (1) te(l,2] 77.95256668 624.4970770 2115.257346 3864.665800 4066.856051 2330.910741 585.2217362

Data availability
No data was used for the research described in the article.
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