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The initial phases of milk coagulation for cheese manufacturing can be tracked by an integro
differential equation known as a population balance equation. In this article, a new analytical 
approach using multistage Bernstein polynomials is presented to solve a rennet-induced coagula- 
tion equation for the first time. The existence of the solution and convergence analysis of the 
proposed approach are discussed in detail to support the mathematical formulation. Our main 
interest is in computing the integral moments, such as the number and total volume/mass 
of casein micelles over time. These moments are evaluated by approximating them with the 
linear combinations of Bernstein polynomials that involve unknown coefficients. Furthermore, the 
unknown coefficients are determined by selecting an appropriate number of collocation points, 
based on the considered time span of the process. To test the accuracy and efficiency of the new 
approach, the new analytical solutions for the integral moments are obtained for constant, sum 
and product coagulation kernels and results are verfied by comparing with the existing finite 
volume scheme and Picard’s method.
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1. Introduction

The volume of milk used to make cheese is increasing globally, and control of milk coagulation, one of the first steps in cheese 
production, is essential to achieve high yield and consistent quality. Milk is a complex fluid composed of various proteins, fats, 
carbohydrates, vitamins, and minerals. Among its proteins, caseins are the most abundant, existing primarily in the form of casein 
micelles. In milk, casein proteins (alpha-casein, beta-casein, and kappa-casein) form micelles, which are spherical structures that hold 
these proteins together. The coagulation process initiates with the cleavage of milk proteins through the action of the proteolytic 
enzyme complex known as rennet. The rennet enzyme interacts with the natural colloidal particles called casein micelles present 
in milk, resulting in their aggregation to form a coagulum [1,2]. This coagulum is then cut to form curd. These curds can then 
be further processed to produce various types of cheese. Upon adding rennet to milk, it selectively acts on kappa-casein, a hairy 
structure found on the casein micelles. The rennet enzyme cleaves the kappa-casein molecules, which leads to the destabilization of 
the micelles and prompts their aggregation. Three consecutive processes occur during milk enzymatic coagulation treatment, two of 
which are important for mathematical modelling of the coagulation process. First of all, the casein micelles undergo proteolysis to 
produce unstable paracasein micelles and soluble peptides as shown below in Fig. 1. The coagulation of unstable paracasein micelles 
(of volumes 𝑥 and 𝑦) and occurs at a rate 𝛽(𝑥, 𝑦, 𝑡), as illustrated in Fig. 2. 

The coagulation process transforms liquid milk into a gel-like structure, which is cut and then separates into curds and whey over 
time. After the whey is drained, the remaining curds are used to produce the cheese. A number density function (number of particles 
in a differential volume) 𝜂(𝑥, 𝑡) can be used to study the evolving micelle size distribution during coagulation. The coagulation process 
of milk can be described using the population balance equation (PBE) [3] given by:

Fig. 1. Representation of first step (proteolysis) of rennet-induced coagulation process. 

Fig. 2. Illustration of second step (coagulation to form coagulum) of rennet-induced coagulation process. 
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𝜕𝜂(𝑥, 𝑡)
𝜕𝑡 

=𝐾1𝑔(𝑥,0) exp(−𝐾1𝑡) +
1
2

𝑥 

∫
0 

𝛽(𝑥− 𝑦, 𝑦, 𝑡)𝜂(𝑦, 𝑡)𝜂(𝑥, 𝑡)𝑑𝑥−

∞ 

∫
0 

𝛽(𝑥, 𝑦, 𝑡)𝜂(𝑥, 𝑡)𝜂(𝑦, 𝑡)𝑑𝑥, (1)

with the initial conditions

𝑔(𝑥,0) = 𝑔0(𝑥), 𝜂(𝑥,0) = 𝜂0(𝑥),  𝑥 ∈]0,∞[. (2)

Here, 𝑔(𝑥,0) and 𝜂(𝑥,0) are initial concentration of the casein micelles and number density function of paracasein micelles having 
volume 𝑥 > 0 at any time 𝑡, respectively. The fundamental phase of the enzymatic coagulation process, which is believed to exhibit 
first-order kinetics [3], is represented by the first term on the right side of equation (1), 𝐾1 is the first-order rate constant for 
proteolysis, and the second term refers to the process by which casein micelles with volumes 𝑥 and 𝑦 merge to generate new casein 
micelles with volume 𝑥+𝑦 at the rate 𝛽(𝑥, 𝑦, 𝑡). The rate 𝛽(𝑥, 𝑦, 𝑡) is known as the coalescence kernel, which is symmetric with respect 
to 𝑥 and 𝑦. The third term describes the depletion of casein micelles having volumes 𝑥 when merging with casein micelles with 
volume 𝑦.

1.1. Literature review and motivation

The progress over time of changes in particle characteristics brought about by nucleation, growth, aggregation, and breakage 
is described by population balance equations (PBEs). PBEs have a broad range of applications in almost all scientific domains such 
as chemical engineering [4], nuclear engineering [5], biomedical engineering [6], sprayed fluidized bed granulation [7], electro
chemistry [8], and personalized medicine [9]. The second stage of the enzymatic coagulation process (1) (shown in Fig. 2) has been 
subjected to numerous studies that have examined different components including existence and uniqueness of solutions [10], scaling 
and self similarity [11] and gelation effect [12]. Gelation is a phase transition where the numerical method struggles to accurately 
preserve mass or volume, leading to challenges in modelling the coagulation process in cheese manufacturing. However, the nonlin
ear behaviour of the second stage of enzymatic coagulation restricts analytical solutions to only simple structured kernels [13--16]. 
Existing numerical approaches for the second stage of enzymatic coagulation process are available in literature such as method of 
moments [12], Discrete element method [17], Lattice Boltzmann method [18], finite volume schemes [19--21], and sectional meth
ods [22,23]. Some recently developed semi-analytical approaches for aggregation and breakage models are provided in [24,25] and 
references therein. The merits and demerits of aforementioned methods have been discussed in detail in [21,26,27].

However, as per our knowledge, no analytical solutions are available for the combined first two stages of the enzymatic coagulation 
process. In the literature, different authors (refer to [3,28] and references therein) solved the combined first-two stages of enzymatic 
coagulation process by converting it to the moments form, which is given below:

𝑑𝜇𝑝(𝑡)
𝑑𝑡 

=𝐾1 exp(−𝐾1𝑡)

∞ 

∫
0 

𝑥𝑝𝑔(𝑥,0)𝑑𝑥+ 1
2

∞ 

∫
0 

∞ 

∫
0 

[
(𝑥+ 𝑥′)𝑝 − 𝑥𝑝 − 𝑥′ 𝑝

]
𝛽(𝑥,𝑥′, 𝑡)𝑓 (𝑥′, 𝑡)𝑓 (𝑥, 𝑡)𝑑𝑥𝑑𝑥′. (3)

Here 𝜇𝑝(𝑡) is the 𝑝𝑡ℎ order moment. For 𝑝 = 0, the zeroth order moment can be captured which provides the total number of paracasein 
micelles in the system. Whereas for 𝑝 = 1, the first order moment can be derived which describes the total volume of paracasein 
micelles in the system. In the existing work, the authors used a Dirac delta function (𝑔(𝑥,0) = 𝛿(𝑥−1)) centred at 𝑥 = 1 so that for all 
moments 𝑥𝑝 is only evaluated at 𝑥 = 1 [3,29]. This restriction indicates that the unstable paracasein micelles formed during the initial 
phase of the enzymatic coagulation process have the same volume and size distributions cannot be modelled. In addition, traditional 
power series expansions were used to expand the integral moments which were dependent on many unknown variables and required 
additional calculations, leading to computational expense [30]. It is worth noting that power series expansions are not always the 
most efficient or accurate method for approximating functions or calculating integral moments. By using power series expansions, 
the integral moments can be approximated as a series of terms involving the unknown variables. This allows for simplfication 
and potentially more manageable calculations. However, power series expansions typically involve an ifinite number of terms, so 
truncating the series after a certain number of terms introduces some level of error into the approximation.

Compared to numerous numerical techniques that rely on meshes for computation, a variety of semi-analytic methods are also 
available in the literature for solving practical problems involving differential equations [31,32], integral equations [33], and integro
partial differential equations [34,35]. Some of semi-analytic techniques are B-spline methods [36--38], spectral techniques [39], 
special function based spectral technique [40], wavelet techniques [41,42].

In this work, our aim is to develop a meshfree approach based on the multistage Bernstein collocation method for the combined 
first-two stages of enzymatic coagulation process in order to track the macroscopic properties by converting the original equation (1)
into the moments form (3). This approach demonstrates great flexibility and robustness in considering both Dirac delta and exponential 
initial conditions in order to model the first phase of the milk coagulation process. The use of exponential initial conditions enables 
us to analyse a diverse distribution of casein micelles with varying volumes across a broad range of the volume domain, making 
it a more practical approach. Moreover, the new approach offers a significant advantage over traditional numerical discretization 
methods in that it enables the solution without the need for unphysical restrictive assumptions such as linearization, discretization 
or perturbation. To enhance the understanding of the new approach, both existence of the solution and convergence are analyzed in 
detail. The accuracy of the new approach is compared against a finite volume method (FVM) and Picard’s method. Particularly in 
areas with steep gradients, FVM may introduce numerical diffusion. Sharp gradients and minute details in the solution may not be 
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accurately captured due to this diffusion. As well, Picard’s method is most effective for problems with weak nonlinearity. For strongly 
nonlinear problems, it may require an excessive number of iterations to reach convergence. Thus the practice of Picard’s method is 
computationally expensive.

The rest of content of the article is outlined as follows: The existence of the solution is discussed in Section 2. In next Section 3, 
the basics of Bernstein polynomials and the detailed derivation of the multistage Bernstein collocation method for the enzymatic 
coagulation process (3) is presented. The convergence analysis is conducted in detail in Section 4. In Section 5, the new approach 
is tested against a finite volume scheme and Picard’s method in order to check the accuracy and efficiency for different coagulation 
kernels. Next Section 6 is used to make some important remarks and conclusions related to the current study.

2. Existence theorem

In order to establish the existence theorem, the moment equation (3) can be rewritten into the following generalized differential 
equation

𝑑𝜇𝑝(𝑡)
𝑑𝑡 

=𝑀𝑝𝐾1 exp(−𝐾1𝑡) + 𝐹 (𝑡, 𝜇𝑝(𝑡)), 𝑡 ∈ [0,𝐿)  and 𝑝 = 0,2, (4)

where

𝐹 (𝑡, 𝜇𝑝(𝑡)) =
1
2

∞ 

∫
0 

∞ 

∫
0 

[
(𝑥+ 𝑥′)𝑝 − 𝑥𝑝 − 𝑥′ 𝑝

]
𝛽(𝑥,𝑥′, 𝑡)𝑓 (𝑥′, 𝑡)𝑓 (𝑥, 𝑡)𝑑𝑥𝑑𝑥′,

for the constant, sum kernel, and product kernels, where 𝑀𝑝 = ∫ ∞
0 𝑥𝑝𝑔(𝑥,0)𝑑𝑥. The first order moment has exact solution 𝜇1(𝑡) =

𝑀1(1 − exp−𝐾1𝑡) + 𝜇1(0) for every kernel 𝛽, where 𝜇1(0) =
∞ 

∫
0 

𝑥𝑓 (𝑥,0)𝑑𝑥. The initial value problem (IVP) (4) subject to the initial 

condition 𝜇𝑝(0) =
∞ 

∫
0 

𝑥𝑝𝑓 (𝑥,0)𝑑𝑥 can be written in the following equivalent integral equation:

𝜇𝑝(𝑡) =𝑀𝑝

(
1 − exp(−𝐾1𝑡)

)
+

𝑡 

∫
0 

𝐹 (𝑠,𝜇𝑝(𝑠))𝑑𝑠+ 𝜇𝑝(0). (5)

Some assumptions on the IVP (4) related to existence of the solution are as follows:

E1. 𝜇𝑝(𝑡) ∈ 𝐶[0,𝐿] ∪𝐶1[0,𝐿],
E2. 𝐹 (𝑡, 𝜇𝑝(𝑡)) ∈ 𝐶([0,𝐿] ×𝐶[0,𝐿] ∪𝐶1[0,𝐿], [0,∞)).

Theorem 2.1. (Index Theorem) Let 𝑋 be retract of real Banach space 𝐸, 𝑋1 be bounded convex retract of 𝑋, and 𝑈 ⊂𝑋 be nonempty 
open subset, such that 𝑈 ⊂ 𝑋1. If 𝑇 ∶ 𝑋̄1 → 𝑋 is completely continuous operator, 𝑇 (𝑋1) ⊂ 𝑋1, such that there is no fixed point of 𝑇 in 
𝑋1 ⧵𝑈 , then 𝑖(𝑇 ,𝑈,𝑋) = 1.

Proof. See [43]. □

The vector space 𝑉 = 𝐶[0,𝐿] endowed with ordering 𝜇𝑝(𝑡) < 𝜇′
𝑝
(𝑡), for all 𝑡 ∈ [0,𝐿], and norm ‖𝜇𝑝(𝑡)‖ = max 

𝑡∈[0,𝐿]
|𝜇𝑝(𝑡)|, form a Banach 

space. Let us dfine a cone 𝐻 in the space 𝑉

𝐻 =
{
𝜇𝑝 ∈ 𝑉 ∶ 𝜇𝑝 ≥ 0, min 

𝑡∈[0,𝐿]
𝜇𝑝(𝑡) ≥ 𝜆‖𝜇𝑝(𝑡)‖} , (6)

and an operator

𝑆 ∶𝐻 →𝐻, (7)

such that

(𝑆𝜇𝑝)(𝑡) =𝑀𝑝

(
1 − exp(−𝐾1𝑡)

)
+

𝑡 

∫
0 

𝐹 (𝑠,𝜇𝑝(𝑠))𝑑𝑠+ 𝜇𝑝(0). (8)

The integral equation (5) has solution if and only if 𝜇𝑝(𝑡) solve the operator equation

𝜇𝑝(𝑡) = (𝑆𝜇𝑝)(𝑡). (9)
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Lemma 2.1. Let the conditions E1 and E2 hold, then the operator 𝑆 ∶𝐻 →𝐻 is well dfined and completely continuous.

Proof. We have exp(−𝐾1𝑡) ≤ 1 for 𝑡 ∈ [0,𝐿], then 1− exp(−𝐾1𝑡) ≥ 0 on [0,𝐿]. Thus 𝑆 is non-negative operator under the conditions 
E1 and E2. Since

(𝑆𝜇𝑝)(𝑡) =𝑀𝑝

(
1 − exp(−𝐾1𝑡)

)
+

𝑡 

∫
0 

𝐹 (𝑠,𝜇𝑝(𝑠))𝑑𝑠+ 𝜇𝑝(0), (10)

implies

min 
𝑡∈[0,𝐿]

(𝑆𝜇𝑝)(𝑡) = min 
𝑡∈[0,𝐿]

⎛⎜⎜⎝𝑀𝑝

(
1 − exp(−𝐾1𝑡)

)
+

𝑡 

∫
0 

𝐹 (𝑠,𝜇𝑝(𝑠))𝑑𝑠+ 𝜇𝑝(0)
⎞⎟⎟⎠ . (11)

As (𝑆𝜇𝑝)(𝑡) is non-negative on [0,𝐿], thus there exist 0 < 𝜆 < 1 such that

min 
𝑡∈[0,𝐿]

(𝑆𝜇𝑝)(𝑡) ≥ 𝜆 max 
𝑡∈[0,𝐿]

⎛⎜⎜⎝𝑀𝑝

(
1 − exp(−𝐾1𝑡)

)
+

𝑡 

∫
0 

𝐹 (𝑠,𝜇𝑝(𝑠))𝑑𝑠+ 𝜇𝑝(0)
⎞⎟⎟⎠ , (12)

implies,

min 
𝑡∈[0,𝐿]

(𝑆𝜇𝑝)(𝑡) ≥ 𝜆‖(𝑆𝜇𝑝)(𝑡)‖. (13)

Thus 𝑆 is well dfined. 
Now consider a sequence ⟨𝜇𝑝𝑛(𝑡)⟩ in 𝐻 converges to 𝜇𝑝(𝑡) ∈𝐻 . Then there exists a constant 𝑙 such that ‖𝜇𝑝𝑛(𝑡)‖ < 𝑙 for all 𝑛. 
As 𝐹 is continuous on ([0,𝐿] × [0, 𝑙]), we have

|𝑆𝜇𝑝𝑛(𝑡) −𝑆𝜇𝑝(𝑡)| =
|||||||

𝑡 

∫
0 

𝐹 (𝑠,𝜇𝑝𝑛(𝑠))𝑑𝑠−

𝑡 

∫
0 

𝐹 (𝑠,𝜇𝑝(𝑠))𝑑𝑠
||||||| , (14)

→ 0, as 𝑛→∞, (15)

⟹ ‖𝑆𝜇𝑝𝑛(𝑡) −𝑆𝜇𝑝(𝑡)‖→ 0, as 𝑛→∞. (16)

Hence 𝑆 ∶𝐻 →𝐻 is a continuous operator. 
Let 𝐺 = {𝜇𝑝 ∈𝐻 ∶ ‖𝜇𝑝(𝑡)‖ < 𝑒, 𝑒 is positive constant} be bounded subset of 𝐻 . For 𝜇𝑝 ∈𝐺,

𝑆𝜇𝑝(𝑡) = 𝑀𝑝

(
1 − exp(−𝐾1𝑡)

)
+

𝑡 

∫
0 

𝐹 (𝑠,𝜇𝑝(𝑠))𝑑𝑠+ 𝜇𝑝(0), (17)

≤ max 
𝑡∈[0,𝐿]

⎛⎜⎜⎝𝑀𝑝

(
1 − exp(−𝐾1𝑡)

)
+

𝑡 

∫
0 

𝐹 (𝑠,𝜇𝑝(𝑠))𝑑𝑠+ 𝜇𝑝(0)
⎞⎟⎟⎠ , (18)

< 𝑀𝑝 +𝐿 max 
(𝑠,𝜇𝑝)∈[0,𝑇 ]×[0,𝑒]

𝑓 (𝑠,𝜇𝑝(𝑡)) + 𝜇𝑝(0), (19)

⟹ 𝑆𝜇𝑝(𝑡) <∞. (20)

Thus from Arzela-Ascoli theorem 𝑆(𝐺) is relatively compact subset of 𝐻 , and the operator 𝑆 ∶𝐻 →𝐻 is completely continuous. □

Lemma 2.2. Suppose that E1 and E2 are satified and there exists a constant 𝑑 >𝑀𝑝, such that 𝑓 (𝑠,𝜇𝑝(𝑠)) <
𝑑 −𝑀𝑝 − 𝜇′

𝑝

𝐿 
then there exists 

one non-negative solution of the boundary value problem (4) subject to the initial condition 𝜇𝑝(0) = 𝜇′
𝑝
.

Proof. Let 𝐻𝑑 = {𝜇𝑘 ∈𝐻 ∶ ‖𝑚𝑝‖ < 𝑑} be open subset of 𝐻 . We have to show that 𝑆𝐻̄𝑑 ⊂ 𝐻̄𝑑 . For 𝜇𝑝 ∈ 𝐻̄𝑑

𝑆𝜇𝑝(𝑡) = 𝑀𝑝(1 − exp(−𝐾1𝑡)) +

𝑡 

∫
0 

𝐹 (𝑠,𝜇𝑝(𝑠))𝑑𝑠+ 𝜇′
𝑝
, (21)

< 𝑀𝑝 +
𝑑 −𝑀𝑝 − 𝜇′

𝑝

𝐿 
max 
𝑡∈[0,𝐿]

𝑡 

∫
0 

𝑑𝑠+ 𝜇′
𝑝
, (22)

⟹ ‖𝑆𝜇𝑝‖ < 𝑑. (23)
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Since |𝜇𝑝(𝑡)| < 𝑑 only on 𝐻𝑑 , not on the boundary 𝜕𝐻𝑑 = 𝐻̄𝑑 ⧵𝐻𝑑 . Thus there is no fixed point on boundary 𝜕𝐻𝑑 . Using Theorem 2.1, 
𝑖(𝑆,𝐻𝑑,𝐻) = 1. Thus the IVP (4) has one non-negative solution. □

3. Basics of multistage Bernstein polynomials

3.1. Bernstein polynomials

The Bernstein polynomials of degree 𝑚 on the interval [0,1] are given by

𝐵𝑖,𝑚(𝑡) =
(
𝑚

𝑖

)
𝑡𝑖(1 − 𝑡)𝑚−𝑖, 𝑖 = 0,1,2,⋯ ,𝑚,

where (
𝑚

𝑖

)
= 𝑚! 

𝑖!(𝑚− 𝑖)!
.

These Bernstein polynomials can be generalized to any interval for the microscopic investigation of any signal (solution).

3.2. Generalized Bernstein polynomials

The Bernstein polynomials can be generalized on any general interval [𝑎, 𝑏] by normalizing 𝑡 on [𝑎, 𝑏] with 𝑡 = 𝑥− 𝑎

𝑏− 𝑎 
, as follows

𝐵𝑖,𝑚(𝑥) =
(
𝑛

𝑟

)(
𝑥− 𝑎

𝑏− 𝑎 

)𝑖 (
1 −

(
𝑥− 𝑎

𝑏− 𝑎 

))𝑚−𝑖
, 𝑖 = 0,1,2,⋯ ,𝑚.

3.3. Bernstein function approximation

The approximate solution using least degree Bernstein basis polynomials may not converge using the conventional collocation 
technique on an interval of large length. The interval [0,𝐿] can be divided into 𝑛 sub-intervals of equal length ℎ

[0 = 𝑡0, 𝑡1], [𝑡1, 𝑡2],…[𝑡𝑛−1, 𝑡𝑛 =𝐿],

to get out of this problem. On each sub-interval the Bernstein basis polynomials can be used to approximate a function 𝑓 (𝑡) ∈𝐿2[0,𝐿]
as follows

𝑓 (𝑡) = 𝑓𝑛
𝑚
(𝑡) ≅

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑓 1
𝑚
(𝑡) =

𝑚 ∑
𝑖=0 

𝑐1
𝑖
𝐵1
𝑖,𝑚

(𝑡) = 𝐶𝑇
1 𝐵1(𝑡), 𝑡 ∈ [0 = 𝑡0, 𝑡1],

𝑓 2
𝑚
(𝑡) =

𝑚 ∑
𝑖=0 

𝑐2
𝑖
𝐵2
𝑖,𝑚

(𝑡) = 𝐶𝑇
2 𝐵2(𝑡), 𝑡 ∈ [𝑡1, 𝑡2],

⋮

𝑓𝑛
𝑚
(𝑡) =

𝑚 ∑
𝑖=0 

𝑐𝑛
𝑖
𝐵𝑛
𝑖,𝑚

(𝑡) = 𝐶𝑇
𝑛
𝐵𝑛(𝑡), 𝑡 ∈ [𝑡𝑛−1, 𝑡𝑛 =𝐿],

= [𝐶𝑇
1 ,𝐶

𝑇
2 ,… ,𝐶𝑇

𝑛
]
⎡⎢⎢⎢⎣
𝐵1(𝑡)
𝐵2(𝑡)
⋮

𝐵𝑛(𝑡)

⎤⎥⎥⎥⎦
,

= 𝐶𝑇𝐵, (24)

where, the coefficient of function approximation and the corresponding Bernstein basis on 𝑗𝑡ℎ interval is given by

𝐶𝑗 = [𝑐𝑗0, 𝑐
𝑗

1,… , 𝑐𝑗
𝑚
]𝑇 , 𝐵𝑗 (𝑡) = [𝐵𝑗

0,𝑚(𝑡),𝐵
𝑗

1,𝑚(𝑡),… ,𝐵𝑗
𝑚,𝑚

(𝑡)]𝑇 , 𝑗 = 1,2,… , 𝑛. (25)

3.4. Spline based multi-stage Bernstein collocation method

This section develops a scheme to find the numerical solution of equation (3) to approximate the enzymatic coagulation. To find 
the numerical solution of (3), the combined equation of first two stages of coagulation process, that is, the moment equation (3) is 
used and can be written as the following generalized differential equation

𝑑𝜇𝑝(𝑡)
𝑑𝑡 

=𝑀𝑝𝐾1 exp(−𝐾1𝑡) + 𝐹 (𝑡, 𝜇𝑝(𝑡)), 𝑡 ∈ [0,𝐿)  and 𝑝 = 0,2, (26)

for the constant kernel, sum kernel, and the product kernel, where 𝜇𝑝(0) = 𝜇′
𝑝
. Using equation (24), differential equation (26) can be 

expressed in the following algebraic equation
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𝐶𝑇𝐵′ −𝑀𝑝𝐾1 exp(−𝐾1𝑡) − 𝐹 (𝑡,𝐶𝑇 𝐵) = 0, (27)

where 𝜇𝑝(𝑡) = 𝐶𝑇𝐵, and 𝐵′ = [𝐵′
1(𝑡),𝐵

′
2(𝑡),… ,𝐵′

𝑛
(𝑡)]. The function 𝜇𝑝(𝑡) is divided into 𝑛 piece-wise series and each series consists 

𝑚+ 1 unknown Bernstein coefficients, that is, there is need to find the values of 𝑛(𝑚+ 1) unknown Bernstein coefficients in order to 
find the approximate solution. The proposed methodology deals the equation (26) piece-wise on sub-intervals [𝑡𝑖−1, 𝑡𝑖], 𝑖 = 1,2,… , 𝑛

of equal length ℎ of the interval [0,𝐿). Now, we introduce here 𝑚 collocation points on the first sub-interval [0 = 𝑡0, 𝑡1], given by

𝑡10𝑖 = 𝑡0 +
𝑖 
𝑚
ℎ, 𝑖 = 1,2…𝑚. (28)

The collocation points (28) transform the equation (27) into 𝑚 nonlinear algebraic equations on the sub-interval [0 = 𝑡0, 𝑡1], given by

𝐶𝑇
1 𝐵

′
1(𝑡

1
0𝑖) −𝑀𝑝𝐾1 exp(−𝐾1𝑡

1
0𝑖) − 𝐹 (𝑡10𝑖, 𝐶

𝑇
1 𝐵1(𝑡10𝑖)) = 0. (29)

The equation (29) together with an initial condition 𝜇𝑝(0) ≅ 𝐶𝑇
1 𝐵

′
1(0) = 𝜇′

𝑝
produces 𝑚+ 1 nonlinear algebraic equations in contrast 

to 𝑚+1 unknown Bernstein coefficients. The solution of these algebraic equation with suitable method provides the required solution 
of (4) on the interval [𝑡0, 𝑡1]. In a similar fashion, we choose 𝑚− 1 collocation points, given by

𝑡
𝑗

𝑗−1𝑖 = 𝑡𝑗−1 +
𝑖 

𝑚− 1
ℎ, 𝑖 = 1,2, ...,𝑚− 1, (30)

on the 𝑗th sub-interval for 2 ≤ 𝑗 ≤ 𝑛. These collocation points produce 𝑚− 1, nonlinear algebraic equations

𝐶𝑇
𝑗
𝐵′
𝑗
(𝑡𝑗
𝑗−1𝑖) −𝑀𝑝𝐾1 exp(−𝐾1𝑡

𝑗

𝑗−1𝑖) − 𝐹 (𝑡𝑗
𝑗−1𝑖, 𝐶

𝑇
𝑗
𝐵𝑗 (𝑡

𝑗

𝑗−1𝑖)) = 0, (31)

on the respective sub-interval. Using the procedure of spline method, there exist a pair of algebraic equations

𝐶𝑇
𝑗
𝐵𝑗 (𝑡𝑗−1) =𝑀∗

𝑝
, (32)

𝐶𝑇
𝑗
𝐵′
𝑗
(𝑡𝑗−1) =𝑀∗∗

𝑝
, (33)

in order to maintain the continuity and the smoothness of the solution at left partition node of the next concern sub-interval. Here 
𝑀∗

𝑝
and 𝑀∗∗

𝑝
are the values of approximate value of 𝜇𝑝(𝑡) and its derivative at 𝑡𝑗−1 on the previous sub-interval. Combination of 

the equations (31) and the pair of algebraic equation (32) and (33) produces 𝑚 + 1 nonlinear algebraic equations. We solve these 
algebraic equations for the respective unknown Bernstein coefficients. This complete process provides the required solution on the 
interval [0,𝐿).

4. Convergence analysis

Theorem 4.1. Consider 𝜇𝑝 be 𝛼 + 1 times continuously differentiable function, and 𝑉 be the space of the functions generated with the 
Bernstein basis 𝐵𝑗 = {𝐵𝑗

0,𝛼(𝑡),𝐵
𝑗

2,𝛼(𝑡),… ,𝐵
𝑗
𝛼,𝛼(𝑡)}. Let 𝜇𝑝𝛼 ∈ 𝑉 be the best fit of 𝜇𝑝 on the 𝑗th sub-interval of the interval [0,𝐿], then the 

error bound is

‖𝜇𝑝(𝑡) − 𝜇𝑝𝛼(𝑡)‖ ≤ ℎ𝛼+1
𝑁

(𝛼 + 1)!
, (34)

where 𝑁 = max 
𝑡∈[𝑡𝑗−1 ,𝑡𝑗 ]

|𝜇(𝛼+1)
𝑝

(𝑡)|, and ℎ= 𝑡𝑗 − 𝑡𝑗−1.

Proof. Consider the equivalent 𝛼-degree Taylor’s polynomial 𝜇𝑝1(𝑡) of 𝜇𝑝(𝑡) in terms of 𝜇𝑝𝛼(𝑡) as follows

𝜇𝑝(𝑡) =
𝛼∑
𝑖=0 

(𝑡− 𝑡𝑗−1)𝑖

𝑖! 
𝜇𝑝

(𝑖)
𝛼
(𝑡𝑗−1) ≊ 𝜇𝑝𝛼(𝑡), (35)

and the Taylor’s theorem state that

|||||𝜇𝑝(𝑡) −
𝛼∑
𝑖=0 

(𝑡− 𝑡𝑗−1)𝑖

𝑖! 
𝜇𝑝

(𝑖)
𝛼
(𝑡𝑗−1)

||||| =
|||||𝜇(𝛼+1)

𝑝
(𝜉)

(𝑡− 𝑡𝑗−1)𝛼+1

(𝛼 + 1)! 

||||| , (36)

< max 
𝑡∈[𝑡𝑗−1 ,𝑡𝑗 ]

|||||𝜇(𝛼+1)
𝑝

(𝜉)
(𝑡− 𝑡𝑗−1)𝛼+1

(𝛼 + 1)! 

||||| , (37)

≤ ℎ𝛼+1
𝑁

(𝛼 + 1)!
, (38)

implies

‖𝜇𝑝(𝑡) − 𝜇𝑝𝛼(𝑡)‖ ≤ ℎ𝛼+1
𝑁

(𝛼 + 1)!
. (39)

Thus the approximation 𝜇𝑝𝛼(𝑡) converges to 𝜇𝑘(𝑡) uniformly as ℎ→ 0 or 𝛼→∞. □
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Theorem 4.2. Suppose the function 𝑓 (𝑡, 𝜇𝑝(𝑡)) is a Lipschitz continuous, i.e. there exists a constant  such that

|𝑓 (𝑡, 𝜇𝑝(𝑡)) − 𝑓 (𝑡, 𝜇𝑝 ∗ (𝑡))| ≤ |𝜇𝑝 − 𝜇𝑝 ∗ |,∀  𝑡 ∈ [𝑡𝑗−1, 𝑡𝑗 ]  and 𝜇𝑝,𝜇𝑝 ∗∈ 𝑉 . (40)

Then the approximate solution 𝜇𝑝𝛼(𝑡) of the IVP (4) subject to the boundary condition 𝜇𝑝(0) = 𝜇′
𝑝

converges uniformly to the exact solution 
𝜇𝑝(𝑡) as ℎ→ 0 or 𝛼→∞.

Proof. Suppose 𝜇𝑝 ∈ 𝑉 , we have

𝑆𝜇𝑝(𝑡) =𝑀𝑝(1 − exp(−𝐾1𝑡)) +

𝑡𝑗

∫
𝑡𝑗−1

𝐹 (𝑠,𝜇𝑝(𝑠))𝑑𝑠+ 𝜇𝑝(0). (41)

Since approximation 𝜇𝑝𝛼(𝑡) ∈ 𝑉 , then

𝑆𝜇𝑝𝛼(𝑡) =𝑀𝑝(1 − exp(−𝐾1𝑡)) +

𝑡𝑗

∫
𝑡𝑗−1

𝐹 (𝑠,𝜇𝑝𝛼(𝑠))𝑑𝑠+ 𝜇𝑝(0). (42)

Thus from equation (41) and (42), we have

|𝑆(𝜇𝑝 − 𝜇𝑝𝛼)(𝑡)| =
𝑡𝑗

∫
𝑡𝑗−1

|||𝐹 (𝑠,𝜇𝑝(𝑠)) − 𝐹 (𝑠,𝜇𝑝𝛼(𝑠))
|||𝑑𝑠,

≤ 
𝑡 

∫
0 

(|𝜇𝑝(𝑠) − 𝜇𝑝𝛼(𝑠)|)𝑑𝑠,
implies

max 
𝑡∈[𝑡𝑗−1 ,𝑡𝑗 ]

|𝑆(𝜇𝑝 − 𝜇𝑝𝛼)(𝑡)| ≤ max 
𝑡∈[𝑡𝑗−1 ,𝑡𝑗 ]

(ℎ|𝜇𝑝(𝑠) − 𝜇𝑝𝛼(𝑠)|) . (43)

Now using the result of Theorem 4.1, we have

‖𝑆(𝜇𝑝 − 𝜇𝑝𝛼)(𝑡)‖ ≤ ℎ‖𝜇𝑝(𝑠) − 𝜇𝑝𝛼(𝑠)‖,
<ℎ𝛼+2 𝑁

(𝛼 + 1)!
. (44)

This completes the proof. □

5. Numerical testing and discussion

The proposed method has been subject to test against finite volume scheme, and Picard’s method for the numerical solutions of 
moments equations corresponding to non-gelling constant kernels, sum kernels, and the product kernels in terms of residual error

𝑅𝑤 =
|||||
𝑑𝜇𝑝(𝑡)
𝑑𝑡 

−𝑀𝑝𝐾1 exp(−𝐾1𝑡) + 𝐹 (𝑡, 𝜇𝑝(𝑡))
||||| , 𝑡 ∈ [0, 𝑇 )  and 𝑝 = 0,2, (45)

and absolute error norm

𝑒 = |𝐸𝑥𝑎𝑐𝑡− BCM(𝑁)|. (46)

The definitions of 𝐴𝑣𝑔𝑅𝑤 and 𝐸𝑛𝑑𝑅𝑤 for residual error 𝑅𝑤 have been dfined by

𝐴𝑣𝑔𝑅𝑤 = 1
𝑛 

𝑛 ∑
𝑖=1 

𝑅𝑤(𝑡𝑖), and 𝐸𝑛𝑑𝑅𝑤 =𝑅𝑤𝑡𝑛
, (47)

where 𝑛 is number of test point over the time period, and 𝑡𝑖 is 𝑖𝑡ℎ test point. The maximum relative error norm 𝜌∞ =

max 
𝑡∈[0,𝐿]

||||𝐹𝑉 𝑆 −𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒

𝐹𝑉 𝑆

|||| is also used to validate the methods against existing finite volume scheme.

All the computational works are performed on Maple-18 and the results are plotted on MATLAB-2017b on the PC with cofig
uration (CPU Core(TM) i5-8285U @1.60 GHz, and 8 GB RAM). It is important to note that all the calculations of the normalized 
moments are done for dimensionless volume and time. The normalization of the moments is done by dividing with the initial values 
of their respective moments.
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Table 1
Error analysis of the moments for constant kernel without proteolysis process.

𝜇0 𝜇1

t Exact 𝑁 = 8 𝑒 Exact 𝑁 = 8 𝑒

0 1 1 0 1 1 0 
0.306455 0.867131 0.867131 3.1E-09 1 0.999999 1.1E-15 
0.817213 0.709921 0.709921 1.9E-09 1 0.999999 2.1E-15 
1.327971 0.600966 0.600966 1.3E-09 1 0.999999 9.9E-16 
1.940881 0.507501 0.507501 1.3E-09 1 0.999999 1.3E-15 

Table 2
Error analysis of the moments for sum kernel without proteolysis process.

𝜇0 𝜇1

t Exact 𝑁 = 10 𝑒 Exact 𝑁 = 10 𝑒

0 1 0.999999 2.2E-15 1 0.999999 2.3E-15 
0.1903 0.826711 0.826711 1.8E-13 1 0.999999 3.7E-15 
0.5076 0.601938 0.601938 1.3E-13 1 0.999999 3.4E-15 
0.8248 0.438322 0.438322 6.3E-14 1 1.000000 4.4E-16 
1.2055 0.299542 0.299542 4.2E-14 1 0.999999 7.2E-15 

5.1. Coagulation without proteolysis process

In this part, we demonstrate the implementation of a recently formulated method for solving the moment equation of a pure 
coagulation equation. This equation can be readily obtained by substituting 𝐾1 = 0 into the given equation (3) which takes the 
following form:

𝑑𝜇𝑘(𝑡)
𝑑𝑡 

= 1
2

∞ 

∫
0 

∞ 

∫
0 

[
(𝑥+ 𝑥′)𝑘 − 𝑥𝑘 − 𝑥′ 𝑘

]
𝛽(𝑥,𝑥′, 𝑡)𝑓 (𝑥′, 𝑡)𝑓 (𝑥, 𝑡)𝑑𝑥𝑑𝑥′, 𝑡 ∈ [0,𝐿)  and 𝑘 = 0,1. (48)

First we validate the results obtained by the new approach with the exact solutions of the moments for a pure coagulation equation 
provided in [44] and references therein. For performing the testing, a size-independent and size-dependent kernels are considered 
corresponding to an initial condition 𝑓 (𝑥,0) = 𝑒−𝑥. The testing of the accuracy is done in terms of the first two moments (𝑝 = 0 and 
1).

5.1.1. Size-independent constant kernel

The closed form solution of moments for 𝑘 = 0, and 1 for a pure coagulation equation for the constant kernel 𝛽(𝑥, 𝑦) = 1 provided 
in the literature [44] are

𝜇0 =
2 

2 + 𝑡
,  and 𝜇1 = 1. (49)

To test the validity of the proposed methodology, equation (48) has been solved for constant kernel and the results obtained are 
demonstrated qualitatively in Table 1. 

Table 1 clearly illustrates that the numerical approximations by BCM at 𝑁 = 8 match very well with the closed-form solution 
(Exact) to a significant degree. This shows that the Bernstein collocation method approximated the zeroth and first order moments 
with high precision. Table 1 shows that the accuracy of the BCM in terms of the residual errors in the first two order moments is 
high, which shows the potential of the new approach.

5.1.2. Size-dependent sum kernel

Now let us consider a more challenging size-dependent sum kernel 𝛽(𝑥, 𝑦) = 𝑥 + 𝑦 with an exponential initial condition. Once 
again the closed form moments solution of the equation (48) with sum kernel 𝛽(𝑥, 𝑦) = 𝑥+ 𝑦 given in [44] are listed below:

𝜇0 = 𝑒−𝑡,  and 𝜇1 = 1. (50)

The quantitative results for the moments are shown Table 2 for a sum kernel. The results estimated using the BCM numerical approx
imations match with the closed form solution with a high precision illustrated in Table 2. Table 2 demonstrates that the accuracy of 
the proposed technique in terms of the residual errors. It shows that the errors in the zeroth and first order moments are of the order 
10−13 and 10−15, respectively for 𝑁 = 10. 
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Table 3
Error analysis of the moments for constant kernel.

𝐾1 = 5 𝐾1 = 10

𝐴𝑣𝑔𝑅𝑤 𝐸𝑛𝑑𝑅𝑤 𝐴𝑣𝑔𝑅𝑤 𝐸𝑛𝑑𝑅𝑤

𝜇𝑝(𝑡) BCM(6) BCM(8) BCM(6) BCM(8) BCM(6) BCM(8) BCM(6) BCM(8) 
𝜇0(𝑡) 0.018970 0.003503 7.8E-06 3.5E-07 0.301104 0.077546 4.4E-07 4.4E-08 
𝜇1(𝑡) 0.037608 0.001654 7.0E-06 2.5E-07 0.278630 0.079749 4.4E-07 6.0E-08 
𝜇2(𝑡) 0.056822 0.010533 8.5E-06 3.1E-07 0.526254 0.175974 6.9E-07 1.3E-07 

5.2. Coagulation with proteolysis process

Here we test the accuracy of the new approach by considering the coagulation with the proteolysis process. The comparison is 
conducted for an arbitrary exponential initial condition 𝑓 (𝑥,0) = 𝑒−𝑥 and 𝑔(𝑥,0) = 𝑓 (𝑥,0) for the purpose of testing. However, both 
approaches are flexible and robust to work with any form of 𝑔(𝑥,0). The numerical scheme of Picard’s iterative method is presented 
in Appendix A.

5.2.1. Constant kernel

We begin the testing of the new approach by considering a constant kernel 𝛽(𝑥, 𝑦) = 1. For this case, we have found the closed 
forms of the first and second moments using Picard’s method. Few order moments equations (linear in nature) give exact closed 
form solutions depending on the kind of aggregation kernel considered. For other moments (specifically zeroth moment), nonlinear 
expressions are obtained and the series solutions are obtained by implementing the multistage Bernstein collocation method (BCM) 
and Picard’s method. To check the extent of accuracy of the numerical approximates, residual errors (45) are estimated by considering 
different number of series terms. The simulations are run until time 𝑡 = 2 for 𝐾1 = 5 and 𝐾1 = 10.

Figs. 3(a) and 4(a) demonstrate that the accuracy of the zeroth order moments using different techniques. Figures reveal that the 
BCM solutions match very well with the exact solution and FVS [45], whereas the accuracy of Picard’s method deteriorates after 
time 𝑡 = 0.4. The relationship between the accuracy of the solutions and the value of 𝛼, which represents the degree of Bernstein 
polynomials in BCM is readily apparent. Theorem 4.2 states, as the degree of the Bernstein polynomials 𝛼 increases, the accuracy of 
the solutions improves considerably (cf. Table 3). However, it is important to note that increasing the number of iterations in Picard’s 
method also leads to a rise in computational complexity.

In addition, for 𝐾1 = 5 and 𝐾1 = 10, Figs. 3(c) and 4(c) illustrate the total mass in the system (𝜇1), and all methods show 
equal accuracy, qualitatively. It can be seen that the total mass of paracasein micelles increases due to enzymatic proteolysis and then 
remains constant as coagulation progresses. We also analyse the effect of the values of 𝐾1 on the proteolysis process. While considering 
𝐾1 = 10, the proteolysis process experiences a reduced duration, completing by 𝑡 = 0.61 (as depicted in Fig. 4(c)). Furthermore, the 
second order moments presented in Figs. 3(e) and 4(e) are estimated by all methods with equal precision, with which one can analyse 
the variance of particle size over the process.

The qualitative analysis of different order moments illustrated in Figs. 3 and 4 does not allow us to visualise the accuracy clearly. 
Therefore, the residual errors are plotted that demonstrate the accuracy of the BCM approach against the Picard’s method (refer to 
Figs. 3(b), 3(d), 3(f), 4(b), 4(d) and 4(f)). The quantitative residual errors computed for different order moments demonstrate the 
reliability of the proposed method (BCM) and explain the convergence of the methodology. The residual errors in different order 
moments are computed and listed in Table 3 for different values of 𝐾1. Table shows that the values of 𝐾1 have a significant effect 
on the residual errors, that is, for larger value of 𝐾1 = 10, the residual errors in the moments are higher than the residual errors 
estimated corresponding to 𝐾1 = 5.

5.2.2. Size dependent sum kernel

Now we consider a more complex size dependent sum kernel 𝛽(𝑥, 𝑦) = 𝑥+𝑦 with an exponential initial condition. Due to heavy size 
dependency, it is only feasible to find the close solutions of the first order moment. However, the zeroth and second order moments 
equations are very complex and very challenging to solve analytically. Therefore, the BCM and Picard’s method are used to solve the 
equations corresponding to these moments, and the solutions are compared with the FVS. All the calculations are done for the time 
interval [0,1.2].

The qualitative comparison of BCM and Picard’s method against the FVS is demonstrated in Figs. 5 and 6 for 𝐾1 = 5, and 𝐾1 = 10, 
respectively. It can be seen that both zeroth and first order moments are equally well computed by BCM and Picard’s method and 
match well with the FVS (see Figs. 5(a), 6(a), 5(c) and 6(c)). In addition, the second order moments demonstrated in Figs. 5(e) and 
6(e) show that the second order moments are almost equally well approximated by both the methods and deviate slightly from the 
FVS result. The qualitative residual error analysis is done for different values of 𝐾1 as shown in Figs. 5(b), 5(d), 5(f), 6(b), 6(d) and 
6(f). It can be seen that overall the BCM shows higher quality solutions for the moments than the Picard’s method. The proteolysis 
time is considered to be the time when the proteolysis reaction is completed. It is seen when the first order moment becomes constant. 
For the proteolysis constant 𝐾1 = 5 the first order moment reaches the coagulation point after 𝑡 = 1, whereas it reaches to coagulation 
point at 𝑡 = 0.61 for 𝐾1 = 10 (see Figs. 5(c), and 6(c)). This shows that the large value of 𝐾1 decreases the duration of proteolysis 
process. The numerical results of Picard’s iterative techniques for gelling sum kernel are provided at eight iterations. The gelling 
sum kernel describes the rate at which the paracasein micelles aggregate under enzymatic action, with the coagulation rate being 
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Fig. 3. Testing of different moments and their residual errors for constant kernel 𝛽(𝑥, 𝑦) = 1 with 𝐾1 = 5. 
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Fig. 4. Testing of different moments and their residual errors for constant kernel 𝛽(𝑥, 𝑦) = 1 with 𝐾1 = 10. 
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Fig. 5. Testing of different moments and their residual errors for sum kernel 𝛽(𝑥, 𝑦) = 𝑥+ 𝑦 with 𝐾1 = 5. 
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Fig. 6. Testing of different moments and their residual errors for sum kernel with 𝐾1 = 10. 

Applied Mathematical Modelling 143 (2025) 116035 

14 



N. Sriwastav, A. Das, O. Shardt et al. 

Table 4
Closeness of the proposed methods with FVS in terms of rel
ative error (𝜌∞).

Sum Kernel 
𝐾1 = 5 𝐾1 = 10

𝜇𝑝(𝑡) BCM(12) Picards BCM(12) Picards 
𝜇0(𝑡) 1.1E-02 1.3E-02 1.3E-02 4.9E-02 
𝜇1(𝑡) 6.7E-04 6.7E-04 7.0E-04 2.7E-05 
𝜇2(𝑡) 3.9E-01 2.5E-01 5.1E-01 5.1E-01 

Table 5
Error analysis of the moments for sum kernel.

𝐾1 = 5 𝐾1 = 10

𝐴𝑣𝑔𝑅𝑤 𝐸𝑛𝑑𝑅𝑤 RT 𝐴𝑣𝑔𝑅𝑤 𝐸𝑛𝑑𝑅𝑤 RT 
𝜇𝑝(𝑡) BCM(8) BCM(12) BCM(8) BCM(12) BCM(8) BCM(8) BCM(8) BCM(12) BCM(8) BCM(12) BCM(8) BCM(8) 
𝜇0(𝑡) 0.013369 0.003618 1.3E-03 1.4E-04 0.98 sec 1.37 sec 0.095563 0.011577 2.5E-06 6.4E-11 1.26 sec 1.54 sec 
𝜇1(𝑡) 0.002079 2.6E-06 7.8E-06 1.4E-08 0.93 sec 1.34 sec 0.083736 0.001923 6.0E-08 4.0E-09 1.39 sec 2.5 sec 
𝜇2(𝑡) 0.131664 0.001370 4.6E-05 1.0E-06 1.40 sec 1.46 sec 0.379124 0.032892 9.6E-06 6.3E-06 1.54 sec 1.64 sec 

proportional to the sum of the sizes of the interacting particles. Picard’s method can produce more precise results with increase in 
the number of iterations, but with a high computational cost. The computation cost is provided in terms of CPU run time (RT) for 
ℎ = 0.35 in the Table 5. In comparison to Picard’s method, the BCM produces high quality results with low computational cost. The 
quantitative errors in the moments are listed in Table 5 for 𝐾1 = 5, and 𝐾1 = 10 and shows similar behaviour as previous cases, that 
is, with 𝐾1 = 10, the residual errors are higher compared to 𝐾1 = 5 and can be reduced to a desired level by considering large values 
of 𝑁 as demonstrated in table.

Table 4 demonstrates that the proposed methods are sufficiently close to the existing finite volume scheme, serving as a viable 
alternative. Additionally, Table 5 shows that the approximate solutions align well with the proposed model.

5.2.3. Product kernel

We enhance the testing by considering a more complex product kernel of the form 𝛽(𝑥, 𝑦) = 𝑥𝑦. For this particular case, linear 
differential equations are obtained for the zeroth and first order moments, and therefore exact solutions for both moments are 
obtained. However, for the second order moments, a non-linear differential equation is formed which cannot be solved analytically. 
Similar to the previous cases, the accuracy of both BCM and Picard’s method are compared against the FVS for different values of 𝐾1 .

The comparison of BCM, Picard’s method and FVS is demonstrated in Figs. 7, and 8 for 𝐾1 = 5, and 𝐾1 = 10, respectively. The 
zeroth and first order moments predicted by BCM and Picard’s method show good precision and match very well with the FVS results 
as shown in Figs. 7(a), 7(c), 8(a) and 8(c). In addition, the second order moments estimated by both approaches are compared with 
FVS in Figs. 7(e) and 8(e). The results show that Picard’s method shows deviation very early compared to BCM. The accuracy of 
Picard’s method is highly dependent on the number of series terms considered. Adding more series terms will make the calculation 
computationally expensive. The precision of the BCM can easily be increased by considering high degree of Bernstein polynomials at 
a lower computational cost.

The residual errors in different moments are also estimated using the BCM for 𝐾1 = 5, and 𝐾1 = 10. The results are graphical 
depicted in Figs. 7(b), 7(f), 8(b) and 8(f). The results show similar behaviour as the previous cases, that is, for very short times 
Picard’s method performs better than the BCM, however, for the longer time domain, the BCM shows lesser residual errors in the 
moments compared to the Picard’s method. These residual errors are quantfied and listed in Table 6 which shows that the BCM 
approach is very robust and reliable to capture these macroscopic properties with high precision at a low computational expense.

From above results and discussion, we can conclude that irrespective of the form of the equations (linear or nonlinear) of the 
moments, the BCM has the tendency to estimate the microscopic properties, in particular, zeroth, first and second order moments 
with high precision. The flexibility of choosing the degree of Bernstein polynomials makes this technique more appropriate for solving 
such problems to obtain high accuracy. In contrast, the accuracy of Picard’s method is strongly dependent of the number of series 
terms considered and to increase the accuracy, a large number of series terms is required, making it computationally very expensive.

6. Final conclusions, remarks and future prospects

A collocation method based on multistage Bernstein polynomial is developed to solve a very complex nonlinear integro-partial 
differential equation that arises in a model of the enzymatic coagulation of milk. The accuracy of the proposed method was assessed by 
evaluating the residual error norm with several different types of kernels. At each sub-interval of the time domain, we apply a newly 
developed spline-based multistage Bernstein collocation method for the semi-analytic solution. The proposed method is very efficient 
to solve such a nonlinear complex model in comparison to Picard’s method, and equally efficient to more complex discretisation based 
FVS. Picard’s method has also shown its usefulness because it provides an exact solution in case of linear differential equation. But it 
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Fig. 7. Testing of different moments for product kernel 𝛽(𝑥, 𝑦) = 𝑥𝑦 for 𝐾1 = 5. 
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Fig. 8. Testing of different moments for product kernel 𝛽(𝑥, 𝑦) = 𝑥𝑦 for 𝐾1 = 10. 
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Table 6
Error analysis of the moments for product kernel.

𝐾1 = 5 𝐾1 = 10

𝐴𝑣𝑔𝑅𝑤 𝐸𝑛𝑑𝑅𝑤 𝐴𝑣𝑔𝑅𝑤 𝐸𝑛𝑑𝑅𝑤

𝜇𝑝(𝑡) BCM(6) BCM(8) BCM(6) BCM(8) BCM(6) BCM(8) BCM(6) BCM(8) 
𝜇0(𝑡) 0.057130 0.004744 7.4E-04 2.4E-06 8.2E-05 2.3E-06 3.7E-05 6.3E-09 
𝜇1(𝑡) 0.000684 7.9E-06 6.3E-06 1.5E-09 9.2E-04 2.2E-06 1.1E-05 4.1E-11 
𝜇2(𝑡) 0.066937 0.000117 0.403881 0.002032 0.004601 0.008227 7.3E-05 1.1E-05 

is not useful for nonlinear differential equations because space and time complexity increase. In such cases, spline-based multi-stage 
Bernstein collocation method has shown its supremacy. The tables and figures illustrate that the proposed method converges, that 
is, if we increase the degree of polynomials, accuracy increases. The zero vector was used as the initial guess for all the cases and 
sub-intervals when evaluating the nonlinear algebraic systems. However, if the problem is stiff and sensitive to the initial guess, 
finding an appropriate initial guess may require significant effort.

In future, multiple properties of the system will be tracked by solving multidimensional enzymatic coagulation models for cheese 
coagulation.
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Appendix A. Methodology-II (Picard’s iteration method)

This section introduces a numerical scheme based on Picard’s iteration method for the approximate solution of equation (3) to 
approximate the enzymatic coagulation. The moment equation combines the first two phases of the enzymatic coagulation process, 
is used to determine the numerical solution to (1). The first order moment has exact solution 𝜇1(𝑡) =𝑀1(1− exp−𝐾1𝑡) +𝜇1(0), subject 
to the initial condition 𝜇1(0) for every kernel 𝛽. The moment equation (3) can be rewritten into the following generalized differential 
equation

𝑑𝜇𝑝(𝑡)
𝑑𝑡 

=𝑀𝑝𝐾1 exp(−𝐾1𝑡) + 𝐹 (𝑡, 𝜇𝑝(𝑡)), 𝑡 ∈ [0, 𝑇 )  and 𝑝 = 0,2, (A.1)

for the constant kernel, sum kernel, and the product kernel.
Integrating equation (A.1) from 0 to 𝑡 over [0, 𝑇 ), we have

𝜇𝑝(𝑡) = 𝜇𝑘(0) +𝑀𝑝

(
1 − exp(−𝐾1𝑡)

)
+

𝑡 

∫
0 

𝐹 (𝑠,𝜇𝑝(𝑠))𝑑𝑠. (A.2)

In contrast to Theorem 4.2, there exists a Picard’s iterative formula given by

𝜇𝑝(𝑡)|𝑛 =𝑀𝑝(0) +𝑀𝑝

(
1 − exp(−𝑘1𝑡)

)
+

𝑡 

∫
0 

𝐹 (𝑠,𝜇𝑝(𝑠)|𝑛−1)𝑑𝑠,  for 𝑛 ≥ 1. (A.3)

Here 𝜇𝑝(𝑡)|𝑛 is the 𝑛𝑡ℎ iteration of the approximate solution of 𝜇𝑝(𝑡).
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Appendix B. Validation of the proposed methodology

To validate the authentication of the proposed methodology, the coefficients of the Bernstein polynomials are tabulated here for 
𝑁 = 6 on the sum kernel for proteolytic constant 𝐾1 = 5

𝜇𝑝(𝑡) Domain 𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6

𝜇0(𝑡) 𝑡 ∈ [0,1] 0.990000000 1.616200320 1.160100062 0.908212080 0.673010384 0.508011764 0.384658506 
𝜇0(𝑡) 𝑡 ∈ [1,2] 0.384658506 0.261305248 0.182064098 0.130532372 0.095064400 0.070322364 0.052654326 
𝜇1(𝑡) 𝑡 ∈ [0,1] 1.008800000 1.790909632 1.874814479 1.949736234 1.968671071 1.980901511 1.986565878 
𝜇1(𝑡) 𝑡 ∈ [1,2] 1.986565878 1.992230245 1.992586505 1.993179962 1.993279720 1.993367385 1.993405551 
𝜇2(𝑡) 𝑡 ∈ [0,1] 2.044600000 1.129329156 5.751506264 5.900897593 15.51260925 25.69200763 77.95256668 
𝜇2(𝑡) 𝑡 ∈ [1,2] 77.95256668 624.4970770 2115.257346 3864.665800 4066.856051 2330.910741 585.2217362 
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